Materie aus dem Nichts
Sowohl Spaltung als auch Fusion von Atomkernen sind reale Beispiele, wie aus wenig Masse gewaltige Energiemengen hervorgehen können. Umgekehrt gelangen bisher allerdings nur wenige Experimente wie etwa die Bildung von Paaren aus Elektron und seinem Antiteilchen Positron bei der Kollision energiereicher Gamma-Lichtteilchen.
Einen weiteren theoretisch möglichen Pfad für diese Paarbildung eröffnen extrem starke elektrische Felder in einem Vakuum, aus denen spontan Elektronen und Positronen hervorgehen können. Genau dieses Phänomen konnten Forschende vom HZDR und der Universität Graz nun mit aufwendigen Berechnungen detaillierter als bisher erklären, wie sie in Physics Letters B berichten.
Masse kann in Energie und umgekehrt Energie in Masse umgewandelt werden. Dieses Grundgesetz der Äquivalenz von Masse und Energie geht auf die Spezielle Relativitätstheorie zurück, die Albert Einstein 1905 aufgestellt hat und mit seiner wohl berühmtesten Formel E=mc2 beschreibt. „Ein völlig leerer Raum, also ein Vakuum, verliert seine Stabilität, wenn dort extrem starke elektrische Felder herrschen“, sagt Kohlfürst. Instabil bedeutet, dass das Vakuum eben nicht mehr völlig leer ist, also Materie in Form von Elektronen und Positronen entsteht. Nötig sind dafür elektrische Spannungen von rund 1000 Billiarden Volt pro Meter – Werte, die selbst die Hochspannung von Blitzen um viele Größenordnungen übersteigen.
Doch das hindert Kohlfürst und seine Kollegen nicht, sich diesen extremen Bedingungen theoretisch mit komplexen Modellen und Berechnungen zu nähern. Damit treten sie in die Fußstapfen von berühmten Vorgängern. Denn erstmals schlug der österreichische Physiker Fritz Sauter diesen Effekt bereits 1931 vor. Eine weiter reichende theoretische Erklärung gelang dem amerikanischen Physik-Nobelpreisträger Julian Seymour Schwinger 20 Jahre später. Beide sind heute die Namenspatronen dieses Sauter-Schwinger-Effekts.
Kohlfürst und Team ergänzen die bisher aufgestellten Theorien um einen wesentlichen Aspekt. Ihnen gelang es, das Zeitfenster einzugrenzen, in dem aus starken elektrischen Feldern Materie entsteht. „Dieser Prozess verläuft nicht instantan, also ohne jeden Zeitverlust. Es dauert ein bisschen, bis sich Elektronen und Positronen gebildet haben“, erläutert Kohlfürst. Doch so extrem stark die elektrischen Spannungsfelder sein müssen, so extrem kurz sind diese Zeitfenster. Länger als ein bis zwei Zeptosekunden – das sind ein bis zwei Billionstel einer Milliardstel Sekunde – brauchen Elektronen und Positronen gemäß den numerischen Simulationen der drei Physiker nicht, bis sie aus der Leere des Vakuums in der Realität auftauchen.
„Unsere Arbeit ist Grundlagenforschung und basiert auf der Quantenelektrodynamik, die das Wechselspiel von geladenen Teilchen und dem Elektromagnetismus auf Quantenebene beschreibt“, sagt Kohlfürst. Doch die Ergebnisse könnten auch Impulse für andere Forschungsfelder von der Festkörper- über die Astrophysik bis zur Plasmaforschung für zukünftige Fusionsreaktoren liefern. Denn das Entstehen von Materie aus starken elektrischen Feldern lässt sich als ein Tunnelprozess beschreiben. In diesem Bild schaffen die starken elektrischen Felder tiefe Täler und hohe Berge in einer Potentiallandschaft. Elektronen und Positronen können durch einen Tunnel diese Berge passieren und am Tunnelausgang quasi in der Realität ankommen.
„Mit unserer Studie bezifferten wir die Verweildauer von Elektronen und Positronen in diesem Tunnel“, sagt Kohlfürst. Nun treten Tunnelprozesse auch in Kristallen und dünnen Schichten, fernen Sternen und Galaxien oder in energiereichen Wolken aus geladenen Teilchen auf. So ist es nicht ausgeschlossen, dass die neuen Erkenntnisse auch bei Festkörper-, Astro- oder Plasmaphysikern auf Interesse stoßen.
„Nach der Verweildauer eines Elektrons im Tunnel wollen wir nun versuchen, auch die Länge dieses Tunnels zu bestimmen“, verweist Kohlfürst auf geplante weitere numerische Arbeiten. Das ist alles andere als trivial. Denn niemand weiß, wie schnell sich die Elektronen in diesem Tunnel bewegen. Solche Studien ebnen auch den Weg, das spontane Entstehen von Materie im Vakuum im Experiment zu zeigen. Vorstellbar sind diese Versuche beispielsweise an der Helmholtz International Beamline for Extreme Fields (HIBEF), die das HZDR am European XFEL in Schenefeld betreibt.
„Bisher sind aber selbst die leistungsfähigsten Laser nicht stark genug, um die nötigen elektrischen Felder aufzubauen“, sagt Kohlfürst. Höhere Energien und damit eine Lösung für diese Herausforderung könnten pfiffige Kombinationen aus starken Lasern und Elektronen- oder Ionen-Strahlen bieten. „Und wir würden uns sehr freuen, wenn unsere theoretischen Arbeiten anderen Arbeitsgruppen helfen, ihre Experimente besser und zielgerichteter planen und aufbauen zu können.“
Publikation:
M. Diez, R. Alkofer, C.Kohlfürst: “Identifying time scales in particle production from fields”, in Physics Letters B, 2023 (DOI: 10.1016/j.physletb.2023.138063)
Weitere Informationen:
Dr. Christian Kohlfürst I Institut für Theoretische Physik am HZDR
Tel.: +49 351 260 2415 I E-Mail: c.kohlfuerst@hzdr.de
Medienkontakt:
Simon Schmitt | Leitung und Pressesprecher
Kommunikation und Medien am HZDR
Tel.: +49 351 260 3400 | E-Mail: s.schmitt@hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt fast 1.500 Mitarbeiter*innen – davon etwa 670 Wissenschaftler*innen inklusive 220 Doktorand*innen.
Wissenschaftliche Ansprechpartner:
Dr. Christian Kohlfürst I Institut für Theoretische Physik am HZDR
Tel.: +49 351 260 2415 I E-Mail: c.kohlfuerst@hzdr.de
Originalpublikation:
M. Diez, R. Alkofer, C.Kohlfürst: “Identifying time scales in particle production from fields”, in Physics Letters B, 2023 (DOI: 10.1016/j.physletb.2023.138063)
Weitere Informationen:
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Tropfsteine geben Auskunft über die Dynamik des Klimas in Europa
Geowissenschaftler untersuchen Stalagmiten in rumänischer Höhle, um regionale Niederschlagsmuster zu rekonstruieren. Dynamische Prozesse in der atmosphärischen Zirkulation wie der Nordatlantische Jetstream haben Einfluss auf regionale Veränderungen des Niederschlags. Das zeigen…
Torffreie Blumenerde soll Moore schützen
Herkömmliche Blumenerden und andere Gartensubstrate enthalten meist Torf, der aus Mooren gewonnen wird. Der Torfabbau setzt jedoch große Mengen CO2 frei. Um Moore, die darin vorhandene Artenvielfalt und das Klima…