Mit magnetischen Wirbeln zu energiesparenden Computern

Antiferromagnetisch gekoppelte Skyrmionen
Abb./©: Takaaki Dohi / Tohoku University

Forschende der Universitäten Mainz und Konstanz sowie der Tohoku University in Japan konnten Diffusion von Skyrmionen auf das Zehnfache steigern.

Ohne Computer ist unser heutiges Leben nicht denkbar. Bis dato funktioniert die Informationsverarbeitung über Ladungsträger, die Elektronen, wobei sich die Komponenten jedoch stark erhitzen. Es ist also eine aktive Kühlung nötig, was mit großem Energieaufwand einhergeht. Die Spintronik soll dieses Problem lösen: Statt die Elektronen selbst für die Informationsverarbeitung zu nutzen, setzt man dabei auf deren Spin, also ihren Eigendrehimpuls. Auch auf die Größe, Geschwindigkeit und Nachhaltigkeit von Computern soll sich dieser Schritt positiv auswirken.

Magnetische Wirbel speichern und verarbeiten Informationen

Vielfach betrachtet die Wissenschaft dabei nicht einfach den Spin eines einzelnen Elektrons, sondern magnetische Wirbel aus zahlreichen Spins. Diese Wirbel treten in magnetischen metallischen Dünnschichten auf und werden Skyrmionen genannt, die quasi als zweidimensionale Teilchen betrachtet werden können. Diese Wirbel lassen sich zum einen zielgerichtet bewegen, indem elektrischer Strom an die dünnen Schichten angelegt wird, zum anderen bewegen sie sich zufällig und äußerst energiesparend aufgrund von Diffusion. Dass sich auf Basis von Skyrmionen ein funktionsfähiger Computer realisieren lässt, konnten Forschende der Johannes Gutenberg-Universität Mainz (JGU) rund um Prof. Dr. Mathias Kläui bereits anhand eines ersten Prototyps zeigen. Die Basis bildeten dünne, übereinanderliegende Schichten, teilweise nur wenige Atomlagen dick.

Energieeffizienz: Diffusion der Wirbel auf das Zehnfache gesteigert

Nun ist den Forschenden der JGU gemeinsam mit Kolleg*innen der Universität Konstanz und der Tohoku University in Japan ein weiterer Schritt hin zu spinbasiertem, nicht-konventionellem Computing geglückt: Sie konnten die Diffusion der Skyrmionen durch synthetische Antiferromagneten auf das etwa Zehnfache steigern – und damit den Energieverbrauch eines potenziellen Computers dieser Art drastisch senken. „Die Senkung des Energieverbrauchs elektronischer Bauelement ist eine der größten Herausforderungen der Grundlagenforschung“, betont Prof. Dr. Ulrich Nowak, der den Theorieteil des Projekts in Konstanz leitete.

Doch was ist ein Antiferromagnet und wofür braucht man ihn? Normale Ferromagnete bestehen aus vielen kleinen Spins, die gekoppelt alle in dieselbe Richtung zeigen und damit ein großes magnetisches Moment bilden. In Antiferromagneten zeigt die eine Hälfte der Spins in die eine und die andere Hälfte der Spins in die entgegengesetzte Richtung. Es entsteht also kein netto-magnetisches Moment, obwohl die Spins weiterhin gut (antiferromagnetisch) geordnet sind. Antiferromagnete haben große Vorteile wie etwa eine tausendfach schnellere Dynamik, beispielsweise zum Schalten, eine bessere Stabilität und mögliche höhere Speicherdichten. Im Sonderforschungsbereich Spin+X (SFB/TRR 173) der Rheinland-Pfälzischen Universität Kaiserslautern-Landau (RPTU) und der Johannes Gutenberg-Universität Mainz (JGU) werden diese Forschungsbereiche intensiv untersucht.

Vorteile eines synthetischen Antiferromagneten

Um zu verstehen, warum diese Antiferromagnete hier nützlich sind, muss man ein wenig weiter ausholen. Bewegen sich die Skyrmionen sehr schnell, tritt in ferromagnetischen Schichten senkrecht zur Bewegungsrichtung eine weitere Kraftkomponente auf, die die Wirbel aus der Bahn drückt. Sie krachen also gegen die Wand, bleiben stecken und blockieren den Weg für die anderen, bei hohen Geschwindigkeiten können sie sogar zerstört werden. Theoretisch ist jedoch bekannt, dass dieser Effekt in Antiferromagneten nicht oder nur in sehr geringem Maße auftritt.

Um einen solchen Antiferromagneten herzustellen, haben die Forschenden zwei ihrer ferromagnetischen Schichten so miteinander gekoppelt, dass die Magnetisierung in beiden Schichten genau entgegengesetzt ausgerichtet ist und sich ihre Magnetfelder gegenseitig aufheben. Damit erhalten sie zwei Vorteile: Sie reduzieren die Kraft, die die Wirbel aus ihrer Bahn drückt. „Damit haben wir einen synthetischen Antiferromagneten geschaffen, in dem die Diffusion der Skyrmionen etwa zehnmal höher ist als in den einzelnen Schichten“, sagt Klaus Raab, Physiker an der JGU. „Diese Diffusion lässt sich nutzen, um etwa stochastisches Computing zu realisieren – eine Form des Computing, in dem stochastische Prozesse wie die zufällige Bewegung von Teilchen genutzt werden.“

Wie sich die Kompensation der magnetischen Schichten, die Temperatur und die Größe der Skyrmionen genau auf die Diffusion und somit auf die Bewegung der Skyrmionen auswirkt, untersuchte das Team experimentell sowie über Simulationen. Die Zusammenhänge sind komplex: Steigt die Temperatur, haben die Skyrmionen mehr Energie, um schneller zu diffundieren. Durch die Hitze sinkt auch die Größe der Skyrmionen, was sich ebenfalls positiv auf deren Beweglichkeit auswirkt. Auch wirkt sich die Kompensation der senkrechten Kraftkomponente positiv auf die Diffusion aus. All diese Effekte sind schwer voneinander zu trennen. „Die steigende Diffusion scheint nicht nur auf die reine Kompensation der Magnetfelder, sondern auch auf die damit einhergehende sinkende Größe der Skyrmionen zurückzuführen zu sein“, fasst Raab zusammen.

Prof. Dr. Mathias Kläui, der die Studie geleitet hat, freut sich über die fruchtbare Zusammenarbeit mit der Tohoku University: „Wir arbeiten seit fast zehn Jahren mit dieser führenden japanischen Universität zusammen und es gibt sogar gemeinsame Studienprogramme. Mit Unterstützung des DAAD und weiterer Forschungseinrichtungen konnten schon mehr als ein Dutzend Studierende am Austausch zwischen der JGU und der Tohoku University teilnehmen und ich freue mich, dass diese gemeinsame Arbeit durch die Kooperation möglich geworden ist.“

Die Ergebnisse wurden kürzlich im renommierten Fachmagazin „Nature Communications“ veröffentlicht.

Bildmaterial:
https://download.uni-mainz.de/presse/08_physik_skyrmionen_antiferromagnetische_k…
Antiferromagnetisch gekoppelte Skyrmionen
Abb./©: Takaaki Dohi / Tohoku University

Weiterführende Links:
https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui-Lab am Institut für Physik der JGU
https://rptu.de/trr173/ – Sonderforschungsbereich/Transregion 173 „Spin+X“
https://topdyn.uni-mainz.de/ – JGU-Profilbereich „TopDyn – Dynamics and Topology“

Wissenschaftliche Ansprechpartner:

Klaus Raab
Kläui-Lab
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel.: 06131 39-26788
E-Mail: klraab@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/team/

Originalpublikation:

T. Dohi et al., Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force, Nature Communications, 11. September 2023,
DOI: 10.1038/s41467-023-40720-0

https://presse.uni-mainz.de/mit-magnetischen-wirbeln-zu-energiesparenden-computern/

Media Contact

Kathrin Voigt Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…