Die Molekülfabrik der Zukunft – Synthetische Nanobauwerke per Selbstorganisation
Die Natur erreicht dies durch das grundlegende Prinzip der molekularen Selbstorganisation, das auf kleinstem Raum und äußerst effizient funktioniert.
Wie wäre es, dieses Prinzip zu nutzen, um so eine „Molekülfabrik“ einfach nachzubauen? Münchner Wissenschaftler um Professor Hermann Gaub von der Ludwig-Maximilians-Universität (LMU) München sind diesem Ziel einen entscheidenden Schritt näher gekommen.
Mit einem Rasterkraftmikroskop können sie Moleküle im Labor in vorgegebenen Strukturen auf wenige Nanometer, also Millionstel Millimeter genau, zu Mustern anordnen. In einem zweiten Schritt dienen diese Muster dann als „Grundmauern“ für komplexere Strukturen, die sich selbstständig anordnen. Ein Vorteil der Methode: Der Zusammenbau der Moleküle lässt sich live beobachten, so dass Fehler sofort korrigiert werden können. (Nano Letters 2008, 8 (11))
Wenn in Organismen einzelne Moleküle zu komplexen Strukturen zusammengefügt werden, geschieht das meist automatisch ohne äußeres Zutun. Manche Molekülbausteine haben an ihrer Außenseite eine Art Schloss, andere Moleküle verfügen über den Schlüssel dazu. Die zueinander passenden Bausteine verbinden sich automatisch miteinander, sobald sie sich berühren. Nach diesem Prinzip der Selbstorganisation bilden sich komplexe Strukturen innerhalb von Zellen, und auch ganze Organismen entstehen auf diese Weise.
Die Münchner Physiker Elias Puchner und Stefan Kufer am Lehrstuhl für Angewandte Physik der LMU machten sich dieses Prinzip nun zunutze, um Nanobausteine zu komplexen Mustern zusammenzufügen. Bereits seit einiger Zeit können die Forscher mit dem Rasterkraftmikroskop (AFM) wie mit einem Kran Moleküle nanometergenau von einem Depot aufnehmen und an einer vorgegebenen Stelle wieder absetzen. Als Haken für die Moleküle fungieren dabei DNA-Abschnitte mit unterschiedlicher „Klebrigkeit“ an ihren Enden.
Die erprobte Methode kombinierten die Physiker nun mit dem Prinzip der Selbstorganisation. Sie legten mit dem Rasterkraftmikroskop zunächst Muster aus Biotin-Molekülen an, besser bekannt als Vitamin H. Im nächsten Schritt dienten die Biotin-Moleküle dann als „Ankerpunkte“ für Streptavidin-Moleküle, die nach dem Schlüssel-Schloss-Prinzip genau zum Biotin passen. An den durch die Biotin-Moleküle vorgegebenen Positionen lassen sich so beliebige Nanobausteine platzieren.
Jeder dieser Bausteine muss dazu nur vorher mit einem Streptavidin-Molekül versehen werden. Sobald diese Schlüsselmoleküle in die Nähe der Biotin-Positionen kommen, ordnen sie sich nach den gleichen Mustern an. Gaub schwärmt: „Das ist so, als müsste man zum Bau einer Burg nur einen Haufen Bausteine auf einem Grundriss ausschütten. Der eigentliche Bau entstünde dann von selbst.“
Seinen Mitarbeitern gelang auf diese Weise, Strukturen aus verschiedenen Nanokristallen herzustellen. Einen wichtigen Vorteil der Technologie erläutert Gaub so: „Will man funktionale Nanosysteme aufbauen, kommt es vor allem auf die präzise Positionierung der Bausteine an. Bei unserer Technik kann man die Moleküle live beim Zusammenbau beobachten. Dadurch lassen sich Fehler sofort korrigieren.“
Für die Methode sind viele neue Anwendungen denkbar. So könnten in Zukunft durch das gezielte Aneinanderreihen von Enzymen ganze Molekülfabriken geschaffen werden. Darin ließen sich dann beispielsweise Zellulose-Ligninkomplexe für die Energiegewinnung aufspalten. Mit derartigen künstlichen Enzymkomplexen könnten auch solche Pflanzen zur Produktion von Bio-Kraftstoff genutzten werden, die nicht als Nahrungsmittel benötigt werden.
Die in der Fachzeitschrift „Nano Letters“ veröffentlichte Forschungsarbeit wurde von den Exzellenzclustern „Nanosystems Initiative Munich“ (NIM) und dem LMU-Innovativ-Programm „Functional NanoSystems“ (FuNS) unterstützt.
Weiterführendes Material finden Sie unter:
http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/asap/abs/nl8018627.html
Einen Live-Film der Superstruktur-Entstehung (quicktime) finden Sie unter:
http://pubs.acs.org/subscribe/journals/nalefd/suppinfo/nl8018627/nl8018627-File003.qt
Publikation:
„Nanoparticle Self-Assembly on a DNA-Scaffold Written by Single-Molecule Cut-and-Paste“,
Puchner, E. M.; Kufer, S. K.; Strackharn, M.; Stahl, S. W. and Gaub, H. E.
Nano Letters 2008, 8 (11), 3692 – 3695.
Ansprechpartner:
Prof. Dr. Hermann Gaub
Exzellenzcluster Nanosystems Initiative Munich (NIM) und Center for Nanoscience (CeNS) der LMU
Tel.: 089 / 2180 – 3172
Fax: 089 / 2180 – 2050
E-Mail: gaub@physik.uni-muenchen.de
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Sie verwandelt Materie mit Licht
Halb Chemikerin, halb Physikerin und voll und ganz Forscherin: Niéli Daffé befasst sich mit Materialien, die, wenn beleuchtet, Farbe oder Magnetisierung ändern. Mit SNF-Unterstützung untersucht sie dies mit Röntgenstrahlen. Schon…
Intelligentes Auto erkennt Herz-Kreislauf-Erkrankungen
Rund 270.000 Menschen erleiden in Deutschland pro Jahr einen Schlaganfall. Jeder fünfte Betroffene stirbt innerhalb der ersten Wochen an den Folgen. Um einem Schlaganfall vorzubeugen, ist es wichtig, die Symptome…
Neue Standards für die Oberflächenanalyse von Nanopartikeln
Die Bundesanstalt für Materialforschung und -prüfung (BAM) entwickelt in einem neuen EU-Projekt standardisierte Messverfahren zur Untersuchung der Oberflächen von Nanopartikeln. Ziel ist es, die Funktionalität und Sicherheit von Nanopartikeln weiter…