Molekulare Maschinen mit Lichtantrieb
Die Idee molekularer Maschinen wird in den Nanowissenschaften schon lange diskutiert: Künstlich hergestellte chemische Verbindungen, die in der Lage sind, mechanische Arbeit zu verrichten.
Solche „Nanoroboter“ könnten zum Beispiel medizinische Wirkstoffe transportieren, defekte Zellen reparieren oder Temperaturen im Körper messen, die auf Entzündungen hindeuten. Ein Forschungsteam aus dem Institut für Organische Chemie der Christian-Albrechts-Universität zu Kiel (CAU) ist es nun gelungen, ein Molekül herzustellen, das selbst Moleküle produzieren kann. Angetrieben wird es dabei durch UV-Licht.
Bei dem verwendeten Prinzip orientierten sich die Chemikerinnen und Chemiker an Syntheseverfahren aus der Natur wie der Herstellung von ATP-Molekülen, dem universellen Energieträger von Zellen. Ihre Ergebnisse stellten sie in dem renommierten Fachmagazin Communications Chemistry vor.
Das Problem der klebrigen Finger
Bereits in den 1980er Jahren schwebte Ingenieur Kim Eric Drexler die Idee molekularer Maschinen als sogenannte „Assembler“ vor (von assemble, engl. für zusammenbauen): Sie sollten in der Lage sein, einzelne Atome zu greifen und präzise zu platzieren, um so komplexe Molekül-Strukturen zu bauen.
Letztendlich würden sie sich selbst reproduzieren können, so Drexler. Diese Vision war der Beginn einer intensiven wissenschaftlichen Kontroverse: Gegner, die den Bau solcher Nanoroboter aus Molekülen prinzipiell nicht für möglich hielten, führten im Wesentlichen zwei Argumente an, die in der Forschung als Probleme der „dicken und klebrigen Finger“ bezeichnet werden.
Demnach müsste ein Assembler unzählige „Finger“ im Nanomaßstab haben, um die verschiedenen Atome jeweils greifen und platzieren zu können – dafür fehle jedoch schlichtweg der Platz. Haupthindernis für solche „Molekülbauer“ sei aber die als „sticky fingers“ (zu Deutsch: „klebrige Finger“) bezeichnete Schwierigkeit, einmal gegriffene Atome wieder loslassen und absetzen zu können.
Forschungsergebnisse der letzten Jahre lassen jedoch darauf schließen, dass die Entwicklung solcher Assembler prinzipiell möglich ist. Davon ist Rainer Herges, Professor für Organische Chemie und Sprecher des Sonderforschungsbereichs 677 „Funktion durch Schalten“ an der CAU, überzeugt.
„Immerhin existieren solche molekularen Assembler bereits in der Natur, zum Beispiel in Form von Ribosomen, die in Zellen Proteine herstellen oder zur Synthese von ATP, Adenosintriphosphat. Das Prinzip dieser biochemischen Synthesevorgänge müsste sich also künstlich im Labor nachbilden lassen“, beschreibt Herges seinen Ansatz. Auf diese Weise stellten er und sein Forschungsteam den ersten künstlichen Assembler her, der mit UV-Licht betrieben wird.
UV-Licht steuert Prozesse
Dafür reduzierten die Wissenschaftlerinnen und Wissenschaftler die Komplexität der biologischen Prozesse systematisch soweit, dass sie sich mit Methoden der synthetischen Chemie umsetzen ließen. Sie brachten die Reaktionspartner, vier Vanadat-Ionen, in unmittelbare Nähe zueinander und verknüpften sie zu einem Ring.
Über ein per UV-Licht steuerbares Assembler-Molekül lösten sie einen Reaktionsprozess aus, bei dem sich ein neues Molekül formt. Auch das „klebrige-Finger-Problem“ konnten die Wissenschaftlerinnen und Wissenschaftler mit UV-Licht lösen:
Bestrahlt mit Licht mit einer Wellenlänge von 365 Nanometern ändert sich die äußere Form des Assembler-Moleküls. Seine Enden drücken sich wie eine Zange zusammen, der Raum im Inneren wird zu klein und das neue Molekül wird freigegeben.
UV-Licht wählte das Forschungsteam deshalb als externe Energiequelle, weil es einfach zu handhaben ist und – im Gegensatz zu chemischer Energie – keine unbeabsichtigten Nebenprodukte entstehen.
Paradigmenwechsel in der chemischen Synthese
Ähnliche funktionierende molekulare Maschinen, die zum Beispiel Aminosäuren in Proteine umwandeln könnten, wären mit weniger Nebenprodukten und kürzeren Syntheseprozessen in der Lage, einen Paradigmenwechsel in den Methoden der chemischen Synthese auszulösen, so Herges.
Außerdem betont das Kieler Forschungsteam, dass die Energie des entstandenen Moleküls höher ist als die der Ausgangsstoffe. „Auch wenn ihre Herstellung eine Herausforderung ist, könnten molekulare Assemblers langfristig eine neue Möglichkeit sein, um Lichtenergie in chemische Energie umzuwandeln“, unterstreicht Herges ihre Bedeutung.
Die Arbeit wurde gefördert von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs SFB 677 „Funktion durch Schalten“.
Originalpublikation:
Hanno Sell, Anika Gehl, Daniel Plaul, Frank D. Sönnichsen, Christian Schütt, Felix Köhler, Kim Steinborn & Rainer Herges: Towards a light driven molecular assembler. Communications Chemistry volume 2, Article number: 62 (2019), https://doi.org/10.1038/s42004-019-0163-y
Bildmaterial steht zum Download bereit:
www.uni-kiel.de/de/pressemitteilungen/2019/235-Herges.jpg
Bildunterschrift: Professor Rainer Herges, Sprecher des Sonderforschungsbereichs 677 „Funktion durch Schalten“
© Herges
Weitere Informationen:
Kontakt:
Prof. Dr. Rainer Herges
Institut für Organische Chemie
Sprecher Sonderforschungsbereich 677 „Funktion durch Schalten“
Universität Kiel
Tel.: +49 (0)431 880 2440
E-Mail: rherges@oc.uni-kiel.de
Web: www.uni-kiel.de/fakultas/mathnat/chemie/organische/
Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de
Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni
Link zur Meldung: www.uni-kiel.de/de/detailansicht/news/235-assembler/
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…