Momentaufnahme der Energie

Künstlerische Darstellung des gesteuerten Austauschs einzelner Elektronen (rot und blau) zwischen der Spitze eines Rasterkraftmikroskops (golden) und einem einzelnen Pentacen-Molekül (schwarze und weiße Kugeln), das an NaCl (grün) adsorbiert ist.
(c) Jascha Repp

Den Augenblick der Erregung eines Moleküls einfangen.

Forschende der Universität Regensburg haben in Zusammenarbeit mit IBM Research Europe – Zürich einen Weg gefunden, angeregte Zustände einzelner Moleküle zu messen und deren Energie zu bestimmen.

Eine sehr grundlegende Eigenschaft von Atomen und Molekülen sind die Energien, bei denen Elektronen hinzugefügt oder aus ihnen entfernt werden können. Dies ist entscheidend für viele chemische Reaktionen, bei denen Elektronen ausgetauscht werden. Sie ist jedoch nicht nur von grundlegendem Interesse: Organische Verbindungen sind vielversprechende Kandidaten für moderne Solarzellen, Displays und Lichtquellen, da sie kostengünstig, reichlich vorhanden und ungiftig sind. Für die Funktionalität solcher Geräte sind auch die Energien des Elektronenaustauschs mit der Umgebung von größter Bedeutung.
Angeregte Zustände sind an den relevanten Prozessen in Solarzellen und lichtemittierenden Geräten beteiligt. In angeregten Zuständen haben die Moleküle zusätzliche Energie gewonnen, und der Wert dieser zusätzlichen Energie ist für viele Anwendungen entscheidend.

Forschende der Universität Regensburg haben in Zusammenarbeit mit IBM Research Europe – Zürich einen Weg gefunden, um die Energie des Ladungsaustauschs für Grund- und angeregte Zustände eines einzelnen Moleküls zu ermitteln. Zu diesem Zweck verwendeten sie ein Rasterkraftmikroskop, ein Mikroskop, in dem winzige Kräfte zwischen einer Spitze und einer Oberfläche gemessen werden.

Mit einem solchen Mikroskop lässt sich sogar die innere Struktur einzelner Moleküle abbilden (siehe auch Science 325, 1110; 2009), so dass die Forscher das Molekül unter der Spitze des Mikroskops identifizieren können. Darüber hinaus kann die Spitze auch dazu verwendet werden, dem Molekül lokal Elektronen hinzuzufügen oder zu entnehmen (siehe auch Nature 566, 245; 2019).

Die Regensburger Forschenden nutzten diese Möglichkeit, um auf unterschiedlich geladene und angeregte Zustände einzelner Moleküle zuzugreifen. Indem sie die Energie der in der Spitze verfügbaren Elektronen langsam verändern und beobachten, wann das Molekül Ladungszustandsübergänge durchläuft, konnten die verschiedenen angeregten Zustände erreicht, identifiziert und ihre Energien gemessen werden.

Die Forschenden stellen sich vor, dass diese Technik auf eine Reihe von Molekülen angewandt werden könnte, sowohl solcher, die für die Grundlagenforschung interessant sind, als auch solcher für Anwendungen in der Energiegewinnung und der organischen Elektronik.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jascha Repp
Fakultät für Physik
Universität Regensburg
Tel.: +49 (0)941 943-4201
E-Mail: Jascha.Repp@physik.uni-regensburg.de

Originalpublikation:

Lisanne Sellies, Jakob Eckrich, Leo Gross, Andrea Donarini, Jascha Repp
Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules
Nature Nanotechnology
https://www.nature.com/articles/s41565-024-01791-2

https://www.uni-regensburg.de/newsroom/presse/mitteilungen/index.html?…

Media Contact

Bastian Schmidt Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…