Neuartige Riesenmoleküle – Ultrakalte Temperaturen ermöglichen neuen Bindungstyp
Forscher des 5. Physikalischen Instituts der Universität Stuttgart erzeugten ein neuartiges Molekül, das ebenfalls von diesen Kräften zusammengehalten wird und aus zwei Atomen vom selben Element besteht. Über den ein wenig exotischen Neuling berichtet die Fachzeitschrift 'Nature' in ihrer Ausgabe vom 23. April*).
In diesem neuartigen Molekül ist eines der beiden Atome hoch angeregt: Sein äußerstes Elektron kreist auf einer Bahn mit sehr großem Durchmesser und ist nur noch schwach an den Rest des Atoms gebunden. Man bezeichnet diese hochangeregten Atome nach ihrem schwedischen Entdecker Johannes Rydberg als Rydberg-Atome und das zugehörige Elektron auch als Rydberg-Elektron. Das zweite Atom des Moleküls befindet sich im Grundzustand. Das Besondere an diesem Molekül ist sein Bindungsmechanismus: Er beruht ausschließlich auf dem Einfluss des Rydberg-Elektrons auf das zweite Atom. Es wird im elektrischen Feld des Elektrons polarisiert und dadurch an das Rydberg-Atom gebunden. Die Größe des Moleküls wird deshalb direkt durch die Umlaufbahn des Rydberg-Elektrons bestimmt. Damit zählt dieses Molekül mit einem Durchmesser von mehr als 100 Nanometern zu den größten bekannten zweiatomigen Molekülen.
Strenggenommen bewegen sich die Elektronen in einem Atom nicht auf Kreisbahnen, sondern sind entsprechend einer räumlichen Verteilung „verschmiert“. In der Quantenmechanik wird diese durch die Wellenfunktion beschreiben. Vom Zentrum des Atoms ausgehend besitzt diese Verteilung abwechselnd Maxima und Minima. Dort, wo das Maximum am größten ist, ist auch die Wahrscheinlichkeit am größten, das Elektron anzutreffen. Genau hier liegt die klassische Bahn des Elektrons.
Damit sich das neu entdeckte Molekül bilden kann, muss sich genau in diesem Abstand ein Atom im Grundzustand befinden. Da die Atome in einem Gas bei Zimmertemperatur viel größere Abstände voneinander haben und sich außerdem mit Schallgeschwindigkeit bewegen, benutzten die Physiker aus der Gruppe von Tilman Pfau ein ultrakaltes Gas aus Rubidiumatomen und bestrahlten dieses mit Laserlicht. Dadurch wurde das äußere Elektron von einigen Rubidiumatomen auf eine sehr große Bahn „gehoben“ und es konnten Rydberg-Atome erzeugt werden.
Charakterisierung der Moleküle
Wie lässt sich aber kontrollieren, ob dabei wirklich ein Molekül entstanden ist? Bei der Entstehung der meisten Moleküle kann der Übergang von freien Atomen zu Molekülen direkt an veränderten Eigenschaften beobachtet werden. Die Eigenschaften des neuartigen Rydberg-Moleküls werden jedoch hauptsächlich vom Rydberg-Atom bestimmt. Wegen dieser Ähnlichkeit von Atom und Molekül scheidet der konventionelle Nachweis aus. Deshalb untersuchten die Forscher um Tilman Pfau den Prozess, der zur Bildung der Moleküle führt. Für die Anregung eines Atoms in einen Rydberg-Zustand wird eine charakteristische Energie des Laserlichts benötigt. Erzeugen sie aber ein Molekül, so ändert sich diese Energie: Sie ist genau um die Bindungsenergie des Moleküls kleiner. Um also zu prüfen, ob es sich um ein Molekül oder ein einfaches Rydberg-Atom handelt, haben die Physiker die Energie ihres Lasers in kleinen Schritten verändert und die Anzahl der entstandenen Rydberg-Atome gemessen. Durch diese Methode, bei der sie die Energie ihres Lasers mit einer Genauigkeit von eins zu einer Milliarde kennen, konnten sie das neuartige Molekül erzeugen und gleichzeitig seine Bindungsenergie bestimmen.
Der erstmalige Nachweis dieses neuen Bindungsmechanismus ist eine wichtige Bestätigung einer Theorie, die diese Art von Molekülen bereits im Jahr 2000 vorhergesagt hat. Daneben haben die Physiker an diesen Molekülen aber auch den Einfluss eines Elektrons auf das Grundzustandsatom sehr isoliert studiert und erstmals quantifiziert. Damit konnten sie wichtige quantenmechanische Eigenschaften des Elements Rubidium bestimmen. Grundsätzlich können diese Moleküle nicht nur aus Rubidium, sondern aus allen Elementen gebildet werden, für die die Kraft durch ein Elektron anziehend ist, wie etwa bei den anderen Alkalimetallen. Damit ist dieser Bindungstyp auf eine Vielzahl von chemischen Elementen übertragbar.
Die Arbeit entstand im Rahmen des transregionalen Sonderforschungsbereichs SFB/TR 21 (Control of quantum correlations in tailored matter) und wurde von der Deutschen Forschungsgemeinschaft DFG, der Landesstiftung Baden-Württemberg sowie einen Gastprofessor aus Oklahoma (Humboldtstiftung) unterstützt.
*) Originalveröffentlichung: Vera Bendkowsky, Björn Butscher, Johannes Nipper, Jim P. Shaffer, Robert Löw, Tilman Pfau: Observation of ultra-long range Rydberg molecules, Preprint-Version: http://arXiv.org/abs/0809.2961
Weitere Informationen bei Prof. Tilman Pfau, 5. Physikalisches Institut,
Tel. 0711/685-68025, e-mail: t.pfau@physik.uni-stuttgart.de,
http://www.pi5.uni-stuttgart.de/forschung/rubidium2/rubidium2.html
Media Contact
Weitere Informationen:
http://www.uni-stuttgart.de/Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Interstellares Methan als Aminosäure-Urahn?
Gammastrahlung setzt Methan zu Glycin und anderen komplexen Verbindungen um. Gammastrahlung kann Methan bei Raumtemperatur in eine Bandbreite verschiedener Produkte umsetzen, darunter Kohlenwasserstoffe, sauerstoffhaltige Verbindungen und Aminosäuren, wie ein Forschungsteam…
Neuer Mechanismus: Wie Krebszellen dem Immunsystem entwischen
Ein internationales Team unter Federführung der Goethe-Universität Frankfurt hat einen innerzellulären Sensor identifiziert, der die Qualität sogenannter MHC-I-Moleküle überwacht. MHC-I-Moleküle helfen dem Immunsystem, kranke Zellen – zum Beispiel Tumorzellen –…
Flexible Strahlformung-Plattform optimiert LPBF-Prozesse
Neuer Ansatz in der Strahlformung macht die additive Fertigung flexibler und effizienter: Das Fraunhofer ILT hat eine neue Plattform entwickelt, mit der Laser Powder Bed Fusion (LPBF) Prozesse individuell optimiert…