Neue Erkenntnisse über Magnetisierung
Von Nord nach Süd durch den antiferromagnetischen Dschungel.
Aktuelle Grundlagenforschung zu Magnetisierung kann neue bei der Entwicklung von wesentlich kleineren elektronischen Bausteinen für die Elektronik der Zukunft eröffnen.
Forschende der Universitäten Augsburg und Groningen konnten zeigen, dass das Standardbild der Magnetisierungsumkehr erweitert werden muss. Ihre Erkenntnisse wurden in der Fachzeitschrift „Nature Communications“ veröffentlicht und bereichern nicht nur die Grundlagenforschung, sondern eröffnen neue Perspektiven im Bereich der Kontrolle der Magnetisierung auf kleinsten Skalen und bietet somit ein großes Potenzial zur Entwicklung von wesentlich kleineren elektronischen Bausteinen für die Elektronik der Zukunft.
Fast jeder kennt das Phänomen von Magneten am Kühlschrank, die nach einiger Zeit ihre Magnetisierung verlieren und einfach herunterfallen. Dass die „Haftkraft“ der Magneten wiederhergestellt werden kann, indem man den Magneten in die Nähe eines weiteren, noch magnetisierten Magneten bringt, ist eines der ersten Dinge, die Schülerinnen und Schülern über Magnetismus beigebracht wird und ein Alltagsbeispiel für das Verhalten solcher ferromagnetischer Materialien in einem Magnetfeld. Zu diesem sogenannten Hysterese-Verhalten gehört auch, dass man die Magnetisierung des ferromagnetischen Materials auch „umkehren“ kann, wenn man die Richtung des angelegten Magnetfelds ändert. Dieser Vorgang ist eine der wichtigsten technologischen Anwendungen magnetischer Materialien von magnetischen Speichermedien bis hin zu Schaltelementen der Mikroelektronik.
Bei dieser Magnetisierungsumkehr gibt es einen Punkt, an dem die Magnetisierung Null wird, bevor sie die Richtung wechselt. Dieser Zustand wird üblicherweise durch das Auftreten makro- oder mikroskopischer Bereiche des magnetischen Materials, sogenannte magnetische Domänen, beschrieben, deren Magnetisierungen in unterschiedliche Richtungen zeigen, sodass sie sich gegenseitig aufheben und die Gesamtmagnetisierung verschwindet.
In ihrem kürzlich in der Fachzeitschrift „Nature Communications“ erschienenen Artikel „Magnetization reversal through an antiferromagnetic state“ konnte eine Gruppe Augsburger Physiker unter Federführung von Dr. Somnath Ghara und Dr. Joachim Deisenhofer (beide Arbeitsgruppe von Prof. Istvan Kezsmarki) zusammen mit Kollegen aus Groningen zeigen, dass dieses Standardbild der Magnetisierungsumkehr mittels der Kompensation von Domänen auf makro- oder mikroskopischer Skala nicht für alle Materialen zutrifft und erweitert werden muss. Die Forscher kombinierten Messungen der Magnetisierung, der elektrischen Polarisation, der optischen Eigenschaften im THz-Frequenzbereich und theoretische Simulationen und fanden heraus, dass die Magnetisierungsumkehr in dem polaren Magneten (Fe:Zn)2Mo3O8 durch einen antiferromagnetischen Zustand geschieht, d.h. einen Zustand, in dem die Kompensation der Magnetisierung nicht nur auf makro- oder mikroskopischer Skala sondern auf atomarer Ebene abläuft. Diese Quantenmaterialien stehen auch im Zentrum des neuen von der Deutschen Forschungsgemeinschaft bewilligten Transregio-Sonderforschungsbereiches TRR360 unter Federführung der Universität Augsburg und der Technischen Universität München.
Diese Entdeckung ist nicht nur bemerkenswert seitens der Grundlagenforschung im Bereich der Magnetisierungsphänomene, sondern eröffnet neue Perspektiven im Bereich der Kontrolle der Magnetisierung auf kleinsten Skalen und bietet somit ein großes Potential zur Entwicklung von wesentlich kleineren elektronischen Bausteinen für die Elektronik der Zukunft. Die Tatsache, dass die charakteristischen optischen Anregungen des Materials im THz-Frequenzbereich liegen, eröffnet zusätzliche Möglichkeiten extrem schneller Schaltprozesse im Bereich der Spintronik.
Wissenschaftliche Ansprechpartner:
Dr. Somnath Ghara , Wissenschaftlicher Mitarbeiter
Experimentalphysik V
Telefon: +49 821 598 – 3607
E-Mail: somnath.ghara@uni-a.de
Dr. Joachim Deisenhofer, Wissenschaftlicher Mitarbeiter
Experimentalphysik V
Telefon: +49 821 598 – 3605
E-Mail: joachim.deisenhofer@uni-a.de
Originalpublikation:
Ghara, S., Barts, E., Vasin, K. et al. Magnetization reversal through an antiferromagnetic state. Nat Commun 14, 5174 (2023). https://doi.org/10.1038/s41467-023-40722-y
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Ist der Abrieb von Offshore-Windfarmen schädlich für Miesmuscheln?
Rotorblätter von Offshore-Windparkanlagen unterliegen nach mehrjährigem Betrieb unter rauen Wetterbedingungen einer Degradation und Oberflächenerosion, was zu erheblichen Partikelemissionen in die Umwelt führt. Ein Forschungsteam unter Leitung des Alfred-Wegener-Instituts hat jetzt…
Per Tierwohl-Tracker auf der Spur von Krankheiten und Katastrophen
DBU-Förderung für Münchner Startup Talos… Aus dem Verhalten der Tiere können Menschen vieles lernen – um diese Daten optimal auslesen zu können, hat das Münchner Startup Talos GmbH wenige Zentimeter…
Mit Wearables die Gesundheit immer im Blick
Wearables wie Smartwatches oder Sensorringe sind bereits fester Bestandteil unseres Alltags und beliebte Geschenke zu Weihnachten. Sie tracken unseren Puls, unsere Schrittzahl oder auch unseren Schlafrhythmus. Auf welche Weise können…