Neuer Weg für Verschränkung von Licht und Ton

Künstlerische Darstellung von verschränktem Laserlicht mit einer sich ausbreitenden Schallwelle in einem integrierten photonischen Wellenleiter.
© Alexandra Genes

Für eine Vielzahl neu entstehender Quantentechnologien, wie etwa die sichere Quantenkommunikation oder Quantencomputer, ist die Quantenverschränkung eine Voraussetzung. Wissenschaftler*innen des Max-Planck-Instituts für die Physik des Lichts (MPL) haben nun einen besonders effizienten Weg aufgezeigt, wie Photonen mit akustischen Phononen verschränkt werden können. Die Forscher*innen konnten zeigen, dass diese Verschränkung resilient gegenüber externem Rauschen ist, was bislang eine der grundlegenden Schwachstellen jeder Quantentechnologie darstellte. Ihre Forschungsergebnisse wurden kürzlich in der Fachzeitschrift ›Physical Review Letters‹ veröffentlicht.

Das Team im Labor: Birgit Stiller, Changlong Zhu und Claudiu Genes.
© MPL, Susanne Viezens

Quantenverschränkung ist ein Phänomen, bei dem zwei oder mehr Teilchen so stark miteinander verbunden sind, dass der Zustand eines Teilchens den Zustand des anderen instantan beeinflusst, unabhängig von der Entfernung zwischen ihnen. Die Verschränkung ist ein wichtiges Phänomen für viele Anwendungen der Quantentechnologie, denn sie ist die Voraussetzung für sichere Quantenkommunikation und hochdimensionales Quantencomputing. Photonen, also Lichtquanten, können sich sehr schnell ausbreiten und dabei Quanteninformationen transportieren. Deshalb ist die Erzeugung von Verschränkung zwischen Photonenpaaren mittels nichtlinearer Optik ein etabliertes Verfahren. Wissenschaftler*innen am MPL haben sich kürzlich mit der Frage befasst, wie eine Verschränkung zwischen sehr unterschiedlichen Entitäten hergestellt werden kann. Das ist beispielsweise bei sich ausbreitenden Schallwellen, also Phononen und optischen Photonen, der Fall. Das vorgeschlagene optoakustische Verschränkungsverfahren basiert auf der Brillouin-Mandelstam-Streuung. Es ist besonders belastbar, lässt sich in Quanten-Signalverarbeitungs-Schemata integrieren und ist bei hohen Umgebungstemperaturen einsetzbar.

Einstein nannte es eine „spooky action at a distance“. Die Verschränkung hat schon immer in vielerlei Hinsicht fasziniert, da sie eng mit unserem Verständnis der grundlegenden Naturgesetze verbunden ist. Quantenkorrelationen zwischen Teilchen können selbst dann bestehen bleiben, wenn sie durch große Entfernungen voneinander getrennt sind. Auf praktischer Ebene ist die Quantenverschränkung das Herzstück vieler neu entstehender Quantentechnologien. In der Optik ist die Verschränkung von Photonen grundlegend für sichere Ansätze in der Quantenkommunikation oder im Quantencomputing. Allerdings sind Photonen instabil. Daher wird für bestimmte Anwendungen nach praktikablen Alternativen gesucht, wie z.B. Quantenspeicher oder Quantenrepeater-Schemata. Eine solche Alternative ist der akustische Bereich, in dem Quanten in akustischen Wellen und Schallwellen gespeichert werden.

Wissenschaftler*innen am MPL haben nun einen besonders effizienten Weg gefunden, wie Photonen mit akustischen Phononen verschränkt werden könnten: Während die beiden Quanten entlang derselben photonischen Strukturen wandern, bewegen sich die Phononen mit einer sehr viel geringeren Geschwindigkeit. Der zugrunde liegende Effekt ist ein optischer nichtlinearer Effekt, der als Brillouin-Mandelstam-Streuung bekannt ist. Er ist für die Kopplung von Quanten auf grundverschiedenen Energieskalen verantwortlich.

In ihrer Studie zeigten die Wissenschaftler*innen, dass das vorgeschlagene Verschränkungsschema bei Temperaturen im zweistelligen Kelvin-Bereich funktionieren kann. Das ist viel höher als die Temperaturen, die bei Standardansätzen erforderlich sind. Diese verwenden oft teure Geräte wie Verdünnungskühler. Die Möglichkeit, dieses Konzept in Glasfasern oder photonisch integrierten Chips umzusetzen, macht den Mechanismus für moderne Quantentechnologien besonders interessant.

Wissenschaftlicher Kontakt:

Prof. Dr. Birgit Stiller
Max-Planck-Institut für die Physik des Lichts, Erlangen
Forschungsgruppenleiterin ›Quanten-Optoakustik‹
www.mpl.mpg.de / birgit.stiller@mpl.mpg.de

Originale Publikation:

Changlong Zhu, Claudiu Genes und Birgit Stiller. Optoacoustic entanglement in a continuous Brillouin-active solid state system. Physical Review Letters (2024).
DOI: 10.1103/PhysRevLett.133.203602

https://mpl.mpg.de/de/news-events/neues-aus-dem-institut/news-detail/?…

Media Contact

Edda Fischer Kommunikation und Marketing
Max-Planck-Institut für die Physik des Lichts

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…