Was passiert in den winzigen Poren technischer "Schwämme"?

Mit dem Einsatz eines speziellen mikroskopischen Verfahrens, der Interferenzmikroskopie, gelang Wissenschaftlern des Profilbildenden Forschungsbereichs 1 der Universität Leipzig ein völlig neuer Zugang zur Erforschung der Geschwindigkeit des Stofftransportes in nanoporösen Festkörpern.

Diese Ergebnisse veröffentlichten die Leipziger Forscher kürzlich in den führenden Journalen ihrer Fachrichtung, so unter anderem den renommierten Zeitschriften „Physical Review Letters“ und „Angewandte Chemie, International Edition“.

Die untersuchten nanoporösen Festkörper – winzige Kristalle, die aber im technischen Einsatz Anlagen von vielen Kubikmetern füllen – bestehen aus der Natur nachgebauten Mineralien und gleichen Schwämmen. Deren Poren sind allerdings mit dem bloßen Auge nicht erkennbar, sondern bewegen sich in molekularen Größenordnungen. Zum Schauplatz eines Stofftransportes werden sie beispielsweise dann, wenn Erdöl verarbeitet werden soll. Das Öl, bzw. geeignet ausgewählte Bestandteile, werden dazu mit dem Mini-Poren-Festkörper in Kontakt gebracht. Während dieses Kontaktes – das kann beispielsweise ein Durchströmen sein – verändert sich die Molekülstruktur dieser Bestandteile.

„Durch ihre Poren von Molekülgröße taugen solche Festkörper als Instrument für vielfältige umweltschonende Prozesse in der chemischen Industrie“, erläutert Jörg Kärger, Professor für Experimentalphysik an der Universität Leipzig. „Insbesondere bei der Stoffwandlung durch spezielle Formen der Katalyse und der Stofftrennung durch selektive Adsorption, also oberflächliche Anreicherung, spielen sie eine wichtige Rolle.“

Doch nicht dieses längst angewande Verfahren entwickelten die Leipziger Wissenschaftler, sondern sie gingen seiner Funktionsweise auf den Grund. „Es geht hier um Grundlagenforschung im klassischen Sinne: Um Prozesse in der Praxis zu optimieren, also beispielsweise ressourcensparender oder umweltschonender ablaufen zu lassen, muss man in der Theorie so genau wie möglich wissen, was wirklich passiert und welche Parameter entscheidend sind“, so Kärger. „Und hier hilft uns die Interferenzmikroskopie. Dieses Verfahren macht sich zunutze, dass sich mit der Konzentration von „Gast“-Molekülen auch die optischen Eigenschaften der untersuchten „Wirts“-Materialien verändern. Auf diesem Wege werden die zeitlichen Veränderung der Konzentrationsprofile in ihrem Inneren aufgezeichnet.“ Diese Art der Betrachtung über die Interferenz – also der Überlagerungserscheinungen bei Lichtwellen – wurde bisher noch nicht genutzt.

Eine Serie von Veröffentlichungen in den „Königs-Journalen“ von Physik und Chemie, so beispielsweise über die Molekül-„Einfang“-Wahrscheinlichkeit an Festkörperoberflächen, zum Zusammenhang zwischen intrakristalliner Diffusion und Oberflächenpermeation, zum Auftreten von „Gitter-Gasen“ und zu den Mechanismen des Stofftransportes im Porenraum, dokumentiert den reichen wissenschaftlichen Ertrag, der mit diesem neuen Verfahren erzielt werden konnte. Nicht von ungefähr bilden daher diese Themen einen Schwerpunkt in der Arbeit des von der Deutschen Forschungsgemeinschaft gemeinsam mit ihrer niederländischen Partnerorganisation geförderten Internationalen Graduiertenkollegs „Diffusion in porösen Materialien“.

Weitere Informationen:
Prof. Dr. Jörg Kärger
Telefon: +49 341 97-32502
E-Mail: kaerger@physik.uni-leipzig.de

Media Contact

Dr. Bärbel Adams idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…