Physiker lösen 30 Jahre altes Rätsel um laserangeregtes Silizium
Wird Silizium mit einem Laserpuls von genügend hoher Intensität angeregt, herrscht schon nach einigen billionstel Sekunden unter den Atomen Durcheinander. Die geordnete Kristallstruktur ist nicht mehr zu erkennen.
Wer diesen Prozess versteht, kann die Erkenntnisse möglicherweise in der Oberflächenbearbeitung von Halbleitern nutzen. Ein Physikerteam um Prof. Dr. Martin Garcia, Leiter des Fachgebiets Festkörper und Ultrakurzzeitphysik an der Universität Kassel, stießen bei Untersuchungen nun auf eine neue Eigenschaft dieses laserangeregten Siliziums.
In einer Phase nach der Anregung verhält es sich nämlich wie bestimmte Flüssigkeiten, die aus großen Molekülen bestehen. Diese Erkenntnis könnte dazu beitragen, die Produktion winziger Computerchips in Zukunft effizienter zu machen.
Lange herrschte in der Fachwelt Uneinigkeit über die Beschreibung der Atombewegung während des Zustandekommens dieses Durcheinanders. Einige Experimente legten nahe, die Bewegung direkt nach dem Laserpuls durch eine diffusive Dynamik zu beschreiben. Andere deuteten darauf hin, dass die Atome möglicherweise durch eine geradlinige Bewegung beschrieben werden können. Die Frage wurde auch unter führenden Vertreterinnen und Vertretern der theoretischen Physik kontrovers diskutiert.
Durch die zielgerichtete Analyse von sehr aufwändigen Computersimulationen, bei denen die Kasseler Physiker starke Unterstützung des IT-Servicezentrums der Universität bekamen, ist es Garcia und seinen Kollegen Dr. Eeuwe Zijlstra, Alan Kalitsov und Tobias Zier jetzt gelungen, das Rätsel zu lösen. „Die Atombewegung nach der Laseranregung kann prinzipiell in vier verschiedene Bereiche eingeteilt werden“, erklärt Zijlstra. „Direkt nach der Laseranregung gibt es eine Beschleunigungsphase. Danach folgt eine Erhöhung der Beschleunigung durch Kopplung einzelner Schwingungsmoden im Kristall, gefolgt von einer Bremsperiode, in der die Atome durch Stöße abgebremst werden. Im Anschluss daran geht das System in die diffusive Phase, in der sich die Atome wie eine Flüssigkeit verhalten.“
Als sehr interessant habe sich die Bremsperiode erwiesen, erklärt Garcia: „Dort verhalten sich die Atome ebenfalls wie Flüssigkeiten, allerdings wie bestimmte exotische Flüssigkeiten, die aus großen Molekülen bestehen.“ Ein Beispiel für diese Flüssigkeiten sind bestimmte Proteine in Zellen. „Dass sich die Atome eines elementaren Halbleiters so verhalten, ist eine neue Erkenntnis, die in der Fachwelt für Aufsehen sorgen dürfte“, so Garcia.
Dieses neu entdeckte Verhalten trägt den wissenschaftlichen Namen „Fractional Diffusion“. Ihre Ergebnisse haben die Forscher in der renommierten Fachzeitschrift „Advanced Materials“ veröffentlicht („Fractional Diffusion in Silicon“).
Link zum Artikel: http://onlinelibrary.wiley.com/doi/10.1002/adma201302559/abstract
Info
Prof. Dr. Martin Garcia
Universität Kassel
FB 10 Mathematik und Naturwissenschaften
Institut für Physik
Fachgebiet Festkörper und Ultrakurzzeitphysik
Tel.: +49 561 804 4006
E-Mail: garcia@physik.uni-kassel.de
Media Contact
Weitere Informationen:
http://www.uni-kassel.de http://onlinelibrary.wiley.com/doi/10.1002/adma201302559/abstractAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…