QUANTUS – Bose-Einstein-Kondensation in der Schwerelosigkeit

Wie das Wissenschaftsmagazin Science in seiner neuesten Ausgabe berichtet, erlaubt diese Apparatur im freien Fall ein atomares Wellenpaket zu generieren und dessen Entstehung zu einem Objekt von Millimetergröße über eine Sekunde lang zu verfolgen.

Die Wissenschaftler haben damit eine vielversprechende und sehr robuste Quelle für Materiewellen entwickelt, die zukünftig in hochpräzisen Messgeräten, den so genannten Atom-Interferometer zur Anwendung kommen können. Zum Einsatz kam das Gerät im 146 Meter hohen Fallturm des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. QUANTUS wird mit Beteiligung von sieben deutschen und drei internationalen Einrichtungen am Institut für Quantenoptik an der Leibniz Universität Hannover koordiniert.

Die Interferometrie mit Materiewellen eröffnet völlig neue Ansätze für Präzisionsmessungen auf dem Gebiet der Metrologie sowie der fundamentalen Physik. Eine vielversprechende Quelle für die Interferometrie sind Bose-Einstein-Kondensate. In diesem Zustand verlieren die Atome ihre eigene Identität und können durch eine einzige Wellenfunktion beschrieben werden. Dieser Materiezustand zeigt große Ähnlichkeit zum Laser und zeichnet sich unter anderem durch ein hohe Kohärenz und Modenqualität aus. Quellen für Bose-Einstein-Kondensaten werden daher oft als Atomlaser bezeichnet. Atomlaser sind ein wichtiger Schlüssel, um zukünftige Atominterferometer im ausgedehnten freien Fall in ihrer Empfindlichkeit und Genauigkeit zu verbessern. So wächst die Empfindlichkeit der Interferometer quadratisch mit der Zeit des freien Falls.

Bei den Experimenten im Fallturm in Bremen ist es den Wissenschaftlern gelungen, im freien Fall ein makroskopisches Wellenpaket mit einer Ausdehnung über mehrere Millimeter zu erzeugen und dessen Evolution über eine Sekunde zu beobachten. Dank seiner dem Laser ähnlichen Eigenschaften konnte dieses Materiewellenpaket, in dem mehr als 10.000 Atome delokalisiert waren, mit Hilfe seines Schattenwurfs abgebildet werden. Mit mehr als 180 Abwürfen ist QUANTUS das komplexeste und zugleich stabilste Experiment, das bisher im Fallturm in Bremen durchgeführt wurde. Die Forschungsergebnisse bilden die Grundlage für zukünftige Experimente, in denen die Evolution eines solchen Quantenobjekts mit Hilfe eines Atom-Interferometers beobachtet und sein Potential als Inertialsensor untersucht werden soll.

Zukünftige Einsatzgebiete von Atom-Interferometern reichen von interdisziplinären Anwendungen bei der Vermessung des Erdschwerefeldes bis hin zu Quantentest des schwachen Äquivalenzprinzips. Das schwache Äquivalenzprinzip ist einer der Eckpfeiler der Allgemeinen Relativitätstheorie. Im Bezug auf Materiewellen fordert das schwache Äquivalenzprinzip, dass Gravitation die Ausdehnung von Materiewellen unabhängig von ihrer Zusammensetzung gleichförmig verändert. Tests des Äquivalenzprinzips ziehen ihre Motivation aus dem Sachverhalt, dass es bisher nicht gelungen ist, die Quantenmechanik und die Allgemeine Relativitätstheorie in einer gemeinsamen Theorie zu vereinheitlichen. Der Test des Äquivalenzprinzips mit Quantenobjekten ist daher ein viel versprechender Ansatz, Einsteins Relativitätstheorie mit Hilfe von Bose-Einstein-Kondensaten zu überprüfen.

Das Projekt QUANTUS ist ein Zusammenschluss deutscher und europäischer Forschungseinrichtungen, darunter die Leibniz Universität Hannover, die Universität Ulm, die Humboldt-Universität zu Berlin, die Universität Hamburg, das Max-Planck-Institut für Quantenoptik, die Universität Darmstadt, die Ecole Normale Superieure de Paris, das Midlands Ultracold Atom Research Center in Birmingham, das DLR Zentrum für Raumfahrtsysteme und das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen. Finanziert wurde das Projekt durch die Deutsche Agentur für Luft- und Raumfahrt (DLR) mit Mitteln des Ministeriums für Wirtschaft und Technologie und durch den den Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover.

Der Artikel „Bose-Einstein Condensation in Microgravity“ erscheint am 18. Juni 2010 im Wissenschaftsmagazin Science.

Druckfähiges Foto- und Videomaterial erhalten Sie unter folgenden link:
http://www.student.uni-oldenburg.de/holger.ahlers/Upload/PressKit/PressKit.zip
Weitere Informationen zu QUANTUS unter: http://www.iqo.uni-hannover.de/quantus/
Weitere Informationen zu QUEST unter: http://www.quest.uni-hannover.de

Media Contact

Jessica Lumme idw

Weitere Informationen:

http://www.quest.uni-hannover.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Menschen vs Maschinen – Wer ist besser in der Spracherkennung?

Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…