RaF: Kurzlebiges Molekül macht kleine Effekte groß
Die Physik erhält Verstärkung: Die Energie von Elektronen ändert sich messbar, wenn der Atomkern eines Moleküls vergrößert oder verkleinert wird. Dieser winzige Effekt hat eine internationale Forschungsgruppe am europäischen Kernforschungszentrum CERN in Genf nun in experimentellen Beobachtungen an kurzlebigen Radiummonofluoridmolekülen (RaF) nachgewiesen. Das Team mit Marburger Beteiligung berichtet über seine Ergebnisse in der Fachzeitschrift „Physical Review Letters“.
Will man mehr über den Atomkern und die Elementarteilchen herausfinden, aus denen er besteht, so bieten Messungen an Molekülen ein ideales Szenario: „Wir machen uns zunutze, dass manche physikalischen Effekte in Molekülen um ein Vielfaches verstärkt sein können“, erklärt der Marburger Chemietheoretiker Professor Dr. Robert Berger, einer der Leitautoren der Studie. „Der Verstärkereffekt macht sich besonders bei Molekülen bemerkbar, die sehr schwere, radioaktive Bestandteile enthalten.“
Wenn sich die Zahl der Neutronen im Atomkern verändert – also bei so genannten Isotopen –, kommt es zu kleinen Energiedifferenzen der Elektronen in der Atomhülle; die Fachwelt spricht hier von einer Isotopieverschiebung. „Bislang war wenig über Isotopieverschiebungen in Molekülen bekannt“, sagt Berger. „Experimentell erworbene Kenntnisse über kurzlebige radioaktive Moleküle sind rar, so dass quantenchemische Berechnungen oft die einzige Informationsquelle bilden“, führt der Chemietheoretiker aus. „Wenn es aber gelingt, sehr genau hinzuschauen, kann man messen, wie sich unterschiedlich große Isotopenkerne auf die Wechselwirkungen mit den Elektronen in Molekülen auswirken.“
Moleküle mit kurzlebigen radioaktiven Atomen kommen in der Natur nicht vor; sie müssen daher künstlich in spezialisierten Einrichtungen wie dem Isotopentrenner ISOLDE am europäischen Kernforschungszentrum CERN in Genf hergestellt werden.
Berger und eine vielköpfige Forschungsgruppe aus aller Welt berichten nun erstmals, wie sich die Energieniveaus in einem Radiumfluoridmolekül verschieben, wenn sich die Neutronenzahl im Radiumkern ändert. Hierzu baute das Team am CERN ausgeklügelte Versuche auf, um schrittweise Radiummonofluorid herzustellen und dessen Eigenschaften mittels Laser spektroskopisch zu studieren. „Aufgrund der speziellen elektronischen Situation in RaF kürzen sich die üblichen, eher langweiligen Masseneffekte quasi heraus“, legt Berger dar. Daher könne man den viel kleineren Effekt messen, den die Änderung des Kernvolumens hervorruft.
„Die Ergebnisse dieser Experimente stimmen hervorragend mit unseren theoretischen Berechnungen überein“, berichtet Konstantin Gaul aus der Bergers Arbeitsgruppe. Insbesondere zeigt die gemessene Isotopieverschiebung in Radiummonofluorid, dass das Molekül sehr empfindlich auf Änderungen der Kerngröße reagiert. „Kurzlebige Moleküle wie radioaktives Radiummonofluorid bieten demnach eine hervorragende Möglichkeit, um die Kernstruktur zu studieren“, hebt Gaul hervor. „Hier lernt man mit Hilfe der Molekülspektroskopie etwas über Kernphysik.“
„Wir haben bereits früher theoretisch gezeigt, dass RaF sensitiv für symmetrieverletzende Kerneigenschaften wie zum Beispiel das Anapolmoment ist,“ fügt Berger hinzu. „Mit weiter verfeinerten Experimenten kann man auf die Messung dieser faszinierenden Kerneigenschaften zielen.“
Professor Dr. Robert Berger leitet eine Arbeitsgruppe für Theoretische Chemie an der Philipps-Universität Marburg. An der Studie beteiligten sich zahlreiche weitere Arbeitsgruppen aus der Bundesrepublik, Belgien, China, Finnland, Frankreich, Großbritannien, Russland, der Schweiz und den USA; die Federführung lag bei Berger sowie bei den amerikanischen Physikern Professor Dr. Ronald Fernando Garcia Ruiz und dessen Mitarbeiter Silviu-Marian Udrescu vom „Massachusetts Institute of Technology“.
Die Deutsche Forschungsgemeinschaft, das Bundesforschungsministerium sowie zahlreiche weitere Förderer unterstützten die zugrundeliegende Forschungsarbeit finanziell.
Originalveröffentlichung: Silviu-Marian Udrescu & al.: Isotope Shifts of Radium Monofluoride Molecules, Physical Review Letters (2021), 127, 033001, DOI: >https://doi.org/10.1103/PhysRevLett.127.033001>;
Weitere Informationen:
Ansprechpartner:
Professor Dr. Robert Berger,
Theoretische Chemie
Tel: 06421-2825687
E-Mail: robert.berger@uni-marburg.de
Pressemitteilung zum Versuchsaufbau am CERN: https://idw-online.de/de/news747904
Pressemitteilung des MIT (auf Englisch): https://news.mit.edu/2021/antimatter-neutron-0707
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…