Schwarzes Loch schleudert Teilchen ins All

Jetzt konnten Wissenschaftler bei Beobachtungen der Galaxie Messier 87 erstmals nachweisen, wo die Gammastrahlung genau entsteht – in unmittelbarer Nähe des zentralen schwarzen Lochs der Galaxie. Für die Untersuchung haben sich die drei weltweit führenden wissenschaftlichen Teams in der Hochenergie-Gamma-Astrophysik mit einer Gruppe von Radioastronomen zusammengeschlossen.

An der Entdeckung waren auch Forscher um Prof. Dr. Christian Stegmann vom Erlangen Centre for Astroparticle Physics (ECAP) der Universität Erlangen-Nürnberg beteiligt.

Auf der Suche nach Hinweisen auf die Entstehung und Entwicklung des Universums, richten die Astronomen ihren Blick seit einigen Jahren mit großem Interesse auf die hochenergetische Gammastrahlung. Jetzt konnten Wissenschaftler bei Beobachtungen der Galaxie Messier 87 erstmals nachweisen, wo die Gammastrahlung genau entsteht – nämlich in unmittelbarer Nähe des zentralen schwarzen Lochs der Galaxie. Für die Untersuchung haben sich die drei weltweit führenden wissenschaftlichen Teams in der Hochenergie-Gamma-Astrophysik mit einer Gruppe von Radioastronomen zusammengeschlossen. An der Entdeckung waren auch Forscher um Prof. Dr. Christian Stegmann vom Erlangen Centre for Astroparticle Physics (ECAP) der Universität Erlangen-Nürnberg beteiligt. Ihre Ergebnisse haben die Wissenschaftler in der Ausgabe des Magazins Science Express vom 2. Juli 2009 veröffentlicht.

Messier 87 ist eine gigantische, elliptische Galaxie in unmittelbarer Nachbarschaft unserer Galaxis – etwa 55 Millionen Lichtjahre von der Erde entfernt. In ihrem Zentrum befindet sich ein schwarzes Loch, das mehr als sechs Milliarden mal massereicher ist als unsere Sonne. Dort werden geladene Teilchen nahezu auf Lichtgeschwindigkeit beschleunigt und in gewaltigen Plasmaströmen ins Weltall geschleudert. Wenn die Elektronen und Protonen mit ihrer Umgebung reagieren, entsteht Gammastrahlung – die höchstenergetische elektromagnetische Strahlung, die beobachtbar ist.

Einzigartige Messkampagne
Jetzt ist es zum ersten Mal gelungen, den genauen Ort im Zentrum der Galaxie zu bestimmen, an dem Teilchen beschleunigt werden. Dazu beobachteten die Wissenschaftler den aktiven Kern der Galaxis Messier 87 in den niedrigsten und höchsten Bereichen des elektromagnetischen Spektrums – in einer in dieser Größenordnung noch nie da gewesenen Messkampagne.

Anfang 2008 schlossen sich die drei weltweit führenden Observatorien zur Beobachtung hochenergetischer Gammastrahlung – VERITAS, H.E.S.S. sowie MAGIC – zusammen und zeichneten mehr als 120 Stunden lang Daten von Messier 87 auf. In dieser Zeit konnten die Astronomen zwei große Strahlungsausbrüche im sehr hochenergetischen Gammastrahlungsbereich verfolgen. Gleichzeitig richteten Wissenschaftler das hochauflösende Radioteleskopsystem Very Large Baseline Array auf den inneren Bereich von Messier 87 und verzeichneten einen stetigen Anstieg des Radioflusses im Zentrum der Galaxie – aus der unmittelbaren Nähe des supermassiven schwarzen Lochs. Die Kombination von Beobachtungen in den niedrigsten (Radiowellen) und höchsten (Gammastrahlung) Bereichen des elektromagnetischen Spektrums ermöglichte es zum ersten Mal, den genauen Ort des Gammastrahlungsausbruches und damit den Ort der Teilchenbeschleunigung in Messier 87 zu identifizieren.

Die Forscher der Universität Erlangen-Nürnberg um den Astrophysiker Prof. Dr. Christian Stegmann arbeiten seit Anfang 2004 am H.E.S.S.-Projekt mit. Die vier Teleskope des High Energy Stereoscopic System in Namibia gehören der neuesten Generation der atmosphärischen Cherenkov-Teleskope an. Mit ihren Spiegeldurchmessern von jeweils 13 Metern und ultra-schneller Elektronik beobachten sie das so genannte Cherenkov-Licht. Das sind schwache blaue Lichtblitze, die entstehen, wenn hochenergetische Gammastrahlen mit den Atomen und Molekülen der Atmosphäre reagieren.

Der H.E.S.S.-Kollaboration gehören mehr als 150 Wissenschaftler aus Deutschland, Frankreich, Großbritannien, Polen, Tschechien, Irland, Österreich, Schweden, Armenien, Südafrika und Namibia an. Ihre Kooperation hat schon zu zahlreichen wichtigen Entdeckungen geführt, beispielsweise dem ersten astronomischen Bild eines Supernova-Überrestes in hochenergetischer Gammastrahlung und der Entdeckung einer großen Anzahl von Gammastrahlungsquellen in der galaktischen Ebene.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Weitere Informationen für die Medien:

Prof. Dr. Christian Stegmann
Erlangen Centre for Astroparticle Physics
Tel.: 09131/85-28964
stegmann@physik.uni-erlangen.de
Dr. Martin Raue
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: 06221/516-470
martin.raue@mpi-hd.mpg.de

Media Contact

Ute Missel idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lichtmikroskopie: Computermodell ermöglicht bessere Bilder

Neue Deep-Learning-Architektur sorgt für höhere Effizienz. Die Lichtmikroskopie ist ein unverzichtbares Werkzeug zur Untersuchung unterschiedlichster Proben. Details werden dabei erst mit Hilfe der computergestützten Bildverarbeitung sichtbar. Obwohl bereits enorme Fortschritte…

Neue Maßstäbe in der Filtertechnik

Aerosolabscheider „MiniMax“ überzeugt mit herausragender Leistung und Effizienz. Angesichts wachsender gesetzlicher und industrieller Anforderungen ist die Entwicklung effizienter Abgasreinigungstechnologien sehr wichtig. Besonders in technischen Prozessen steigt der Bedarf an innovativen…

SpecPlate: Besserer Standard für die Laboranalytik

Mehr Effizienz, Tempo und Präzision bei Laboranalysen sowie ein drastisch reduzierter Materialverbrauch: Mit der SpecPlate ersetzt das Spin-off PHABIOC aus dem Karlsruher Institut für Technologie (KIT) durch innovatives Design gleich…