Spintronik: Neues Herstellungsverfahren macht kristalline Mikrostrukturen universell einsetzbar

Coloured electron microscopy image (pink: YIG-bridge, green: glue, gray: sapphire)
Image: AIP Applied Physics Letters

Neue Speicher- und Informationstechnologie braucht auch neue, leistungsfähigere Materialien. Eines davon ist Yttrium-Eisen-Granat, das besondere magnetische Eigenschaften aufweist und mit einem neuen Verfahren auf ein beliebiges Material übertragen werden kann. Entwickelt wurde die Methode von Physikern der Martin-Luther-Universität Halle-Wittenberg (MLU). Der Ansatz könnte die Herstellung von kleineren, schnelleren und energiesparenderen Bauteilen für die Datenspeicherung und Informationsverarbeitung voranbringen. Ihre Ergebnisse haben die Physiker in der Fachzeitschrift „Applied Physics Letters“ veröffentlicht.

Magnetische Materialien spielen bei der Entwicklung neuer Speicher- und Informationstechnologien eine große Rolle. Ein noch junges Forschungsgebiet auf diesem Feld ist die Magnonik: Sie beschäftigt sich mit Spinwellen in Kristallschichten. Der Spin ist eine Art Eigendrehimpuls eines Teilchens, der ein magnetisches Moment erzeugt. Die Auslenkung der Spins kann sich dabei in einem Festkörper wellenartig ausbreiten. „In magnonischen Bauteilen müssten keine Elektronen für die Informationsverarbeitung wandern, weswegen sie viel weniger Energie verbrauchen würden“, sagt Prof. Dr. Georg Schmidt vom Institut für Physik an der MLU. Sie könnten außerdem schneller und kleiner sein als bisherige Technologien.

Doch bisher ist es sehr aufwendig, die dafür benötigten Materialien zu produzieren. Häufig kommt dabei Yttrium-Eisen-Granat (YIG) zum Einsatz, weil es besonders geeignete magnetische Eigenschaften hat. „Das Problem war bisher, dass man die benötigten sehr dünnen, qualitativ hochwertigen Schichten nur auf einem bestimmten Trägermaterial herstellen kann und dass sich diese dann nicht mehr ablösen ließen“, erklärt Schmidt. Das Trägermaterial wiederum hat ungünstige elektromagnetische Eigenschaften.

Dieses Problem haben die Physiker nun gelöst, indem sie das Material dazu bringen, brückenartige Strukturen zu bilden. So wird es zwar auf dem idealen Trägermaterial produziert, danach aber abgelöst. „Diese kleinen Plättchen können dann theoretisch auf jedes beliebige Material geklebt werden“, so Schmidt. Die Methode basiert auf einem Herstellungsprozess bei Raumtemperatur, der in seinem Labor entwickelt wurde. In der aktuellen Studie haben die Wissenschaftler die wenige Quadratmikrometer großen Plättchen auf Saphir geklebt und anschließend die Eigenschaften gemessen. „Wir haben auch bei tiefen Temperaturen gute Ergebnisse gehabt“, so Schmidt. Diese seien für Hochfrequenz-Experimente notwendig, die in der Quantenmagnonik häufig durchgeführt werden.

„Man könnte die Yttrium-Eisen-Granat-Plättchen aber auch zum Beispiel auf Silizium kleben“, so Schmidt. Der Halbleiter wird in der Elektronik sehr häufig angewendet. Zudem könne man auch andere, beliebig geformte Dünnschicht-Mikrostrukturen aus YIG produzieren. Das ist laut Schmidt besonders für hybride Bauteile spannend, bei denen Spinwellen beispielsweise an elektrische Wellen oder auch mechanische Schwingungen gekoppelt werden.

Die Studie wurde durch die Deutsche Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs Transregio 227 gefördert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Georg Schmidt
Fachgruppenleiter Nanostrukturierte Materialien / MLU
Telefon: +49 345 55-25320
E-Mail: georg.schmidt@physik.uni-halle.de
Web: www.nano.physik.uni-halle.de/index.php

Originalpublikation:

Trempler, P. et al. Integration and characterization of micron-sized YIG structures with very low Gilbert damping on arbitrary substrates. Applied Physics Letters (2019). https://doi.org/10.1063/5.0026120

http://www.uni-halle.de

Media Contact

Ronja Münch Pressestelle
Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…