Tiefer Blick in die dipolare Quantenwelt

Das Quantengas-Mikroskop ähnelt einem Schiff im Glas: Vakuumkammer und Linse befinden sich in einer Glaszelle, mit Lasern wird in der Kammer ein Lichtkristall erzeugt.
(c) M.R.Knabl / IQOQI Innsbruck

Zwei weltweit führende Forschungsgruppen, eine unter der Leitung von Francesca Ferlaino und die andere geführt von Markus Greiner, haben ihre Expertise gebündelt und ein ultragenaues Quantengas-Mikroskop für die Beobachtung magnetischer Quantenmaterie entwickelt. Mit diesem können komplexe, dipolare Quantenzustände beobachtet werden, die Ergebnis der Wechselwirkung der Teilchen sind, wie die Wissenschaftler in der Fachzeitschrift Nature berichten.

Magnetische Atome bilden das Herzstück der Forschung von Francesca Ferlaino zu Quantenmaterie. Die Teilchen verfügen über unvergleichliche Eigenschaften für Quantenexperimente. Am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften und dem Institut für Experimentalphysik der Universität Innsbruck erforscht die Experimentalphysikerin mit ihrem Team Materiezustände, die bis anhin nicht untersucht werden konnten.

So haben sie 2012 das erste Bose-Einstein-Kondensat aus Erbium realisiert und 2019 als eines von drei Teams erstmals suprasolide Zustände in ultrakalten Quantengasen aus magnetischen Atomen beobachtet. Das Team des aus Deutschland stammenden Physikers Markus Greiner leistet Pionierarbeit bei der Entwicklung von optischen Techniken zur direkten Beobachtung von einzelnen Atomen. An der Harvard Universität haben die Physiker mit Hilfe hochauflösender Mikroskopie viele exotische Phänomene in stark korrelierten ultrakalten Quantengasen sichtbar gemacht, wie zum Beispiel anti-ferromagnetische Phasen im Jahr 2017.

Vor einigen Jahren hatten Ferlaino und Greiner beschlossen, ihre Expertise zu bündeln und gemeinsam ein Quantengas-Mikroskop für magnetische Atome zu bauen, mit dem Ziel neue Phänomene zugänglich zu machen. „Durch den stark magnetischen Charakter beeinflussen sich die Teilchen über viel größere Distanzen als nicht magnetische Teilchen und ihr Einfluss wirkt immer in eine bestimmte Richtung“, erklärt Francesca Ferlaino. „Aufgrund der Eigenschaften der Teilchen können wir in diesen Quantengasen Wechselwirkungen beobachten, die in herkömmlichen Experimenten nicht zu sehen sind. Dies bietet uns völlig neue Einblicke in die Funktionsweise von Festkörpern.“

Neue Quantenfestkörper beobachtet

In jahrelanger Kleinarbeit haben die Forschungsteams gemeinsam das neue Experiment entwickelt und zwei Mikroskope in Österreich und den USA aufgebaut. „Teile der Apparatur haben wir hier in Innsbruck hergestellt“, erzählt Ferlaino. Heute steht sowohl in Harvard als auch in Innsbruck ein Quantengas-Mikroskop für dipolare Quantengase. Es erzeugt mit Laserstrahlen ein Lichtgitter, in dem sich auf extrem tiefe Temperaturen abgekühlte Erbium-Atome verteilen. Mit Magnetfeldern lassen sich die Teilchen unterschiedlich ausrichten und so die Wechselwirkungen steuern. Die Linse des Mikroskops befindet sich im Inneren einer gläsernen Vakuumzelle, und der Aufbau erinnert so an ein Schiff in einer Flasche.

Die Gruppe um Markus Greiner präsentiert nun in der Fachzeitschrift Nature erste Ergebnisse dieser Arbeiten. Den Wissenschaftlern ist es gelungen zu zeigen, wie durch die Manipulation der Wechselwirkungen in der Apparatur aus supraflüssigen Phasen verschiedene dipolare Quantenfestkörper erzeugt werden können. Diese zeigen sich im Mikroskop als unterschiedliche Muster: Querstreifen, Schachbrettmuster oder diagonale Streifen. „Hier bestimmt die weitreichende, gerichtete Wechselwirkung der Teilchen die Eigenschaften der Materiewolke, die ordnende Kraft des Lichtkristalls wird gebrochen“, erklärt Francesca Ferlaino.

Grundlage für diesen Durchbruch war die langjährige, enge Zusammenarbeit zweiter experimenteller Forschungsgruppen über einen Ozean hinweg. Die gemeinsame Arbeit ermöglicht nun Simulationen von Quantensystemen mit weitreichenden und gerichteten Wechselwirkungen und schafft so die Basis für neue Erkenntnisse zu den Eigenschaften von Quantenmaterie. „Interessant ist das für alle Phänomene, die von diesen Wechselwirkungen dominiert werden, wie etwa der Ferromagnetismus“, zeigt sich Ferlaino begeistert.

Wissenschaftliche Ansprechpartner:

Francesca Ferlaino
Institut für Experimentalphysik
Universität Innsbruck &
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
+43 512 507 52440
francesca.ferlaino@uibk.ac.at
http://www.erbium.at

Originalpublikation:

• Dipolar quantum solids emerging in a Hubbard quantum simulator. Lin Su, Alexander Douglas, Michal Szurek, Robin Groth, S. Furkan Ozturk, Aaron Krahn, Anne H. Hébert, Gregory A. Phelps, Sepehr Ebadi, Susannah Dickerson, Francesca Ferlaino, Ognjen Marković, Markus Greiner. Nature 2023 DOI: 10.1038/s41586-023-06614-3 https://www.nature.com/articles/s41586-023-06614-3 [arXiv: 2306.00888 https://arxiv.org/abs/2306.00888]

• A ship-in-a-bottle quantum gas microscope for magnetic mixtures. Maximilian Sohmen, Manfred J. Mark, Markus Greiner, Francesca Ferlaino. [arXiv: 2306.05404 https://arxiv.org/abs/2306.05404]

https://www.uibk.ac.at/de/newsroom/2023/tiefer-blick-in-die-dipolare-quantenwelt/

Media Contact

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…