W-Band-Empfangsmodul

Das W-Band-Empfangsmodul soll zukünftig eine rauscharme Datenübertragung in der Satellitenkommunikation ermöglichen – wie beispielsweise in dem abgebildeten Nanosatelliten »W-Cube«.
Fraunhofer IAF

… für extrem rauscharme Datenübertragung in der Satellitenkommunikation.

Um dem weltweit rasant wachsenden Datenkonsum und dem steigenden Bandbreitenbedarf gerecht zu werden, weicht die Satellitenkommunikation auf höhere Frequenzen aus. Das W-Band (75–110 GHz) eignet sich gut für die Nutzung im Weltraum, doch bislang fehlt es an technischen Komponenten. Aus diesem Grund hat das Fraunhofer IAF das Projekt »BEACON« gestartet: Gemeinsam mit Forschenden von RPG-Radiometer Physics soll im Rahmen des ESA-Programms ARTES ein neuartiges W-Band-Empfangsmodul realisiert werden. Das Ziel besteht darin, eine Technologie zu entwickeln, die rauschärmer ist als alle bisherigen W-Band-Verstärkermodule und damit den Transfer extrem hoher Datenraten durch den Weltraum ermöglicht.

Foto eines ähnlichen, am Fraunhofer IAF entwickelten Hochfrequenz-Moduls
Fraunhofer IAF

Aufgrund der begrenzten Bandbreite wird es zunehmend schwieriger, die steigende Nachfrage nach höheren Datenraten in Satellitensystemen mit sehr hohem Datendurchsatz zu befriedigen. Um dem Bedarf gerecht zu werden, wird die Nutzung höherer Frequenzen angestrebt. Das W-Band (75–110 GHz) ist für Anwendungen im Bereich der Satellitenkommunikation gut geeignet: Es bietet nicht nur einen hohen Datendurchsatz bei der Nutzung in großen Höhen und im Weltraum, sondern man geht auch davon aus, dass dadurch die Systemkapazität erheblich gesteigert, die Zahl der Gateway-Bodenstationen verringert und damit die Gesamtkosten des Systems reduziert werden können. Allerdings mangelt es bislang an geeigneter Technologie und Hardware für Anwendungen im W-Band-Frequenzbereich.

Das Fraunhofer-Institut für Angewandte Festkörperphysik IAF hat sich gemeinsam mit der RPG-Radiometer Physics GmbH dieser Herausforderung im Projekt »BEACON – W-band Integrated Active Receive Front-End« angenommen: Darin entwickeln die Projektpartner ein integriertes aktives W-Band-Empfangsmodul mit einer Betriebsfrequenz von 81 bis 86 GHz, das extrem hohe Datenraten bzw. eine Datenübertragung über eine große Entfernung mit geringem Stromverbrauch ermöglichen soll.

Minimales Rauschen bei hohem Datendurchsatz

Das Empfangsmodul basiert auf der extrem rauscharmen MMIC-Technologie des Fraunhofer IAF (MMIC – Monolithic Microwave Integrated Circuit, Monolithisch integrierte Mikrowellenschaltung). »Das Fraunhofer IAF hat in den letzten Jahren enorme Entwicklungsarbeit im mHEMT-Prozess geleistet und sich eine Kernkompetenz darin erworben, Verstärker mit dem weltweit geringsten Rauschen zu entwickeln. Auf dieser Grundlage wird im Projekt eine Reduzierung der Rauschzahl auf unter 3,5 dB und damit eine erhebliche Verbesserung des State of the Art angestrebt«, erklärt Dr. Philipp Neininger, Projektkoordinator und Forscher am Fraunhofer IAF.

Zudem ist das Empfangsmodul so konzipiert, dass es die linke und die rechte zirkuläre Polarisation trennt und in zwei getrennten Kanälen (LHCP und RHCP) verstärkt, was einer effektiven Verdoppelung des Datendurchsatzes dient.

Eine große Herausforderung im »BEACON«-Projekt stellt die neuartige Anordnung der Komponenten auf der sehr geringen Modulfläche dar. Der neue Ansatz sieht die Integration einer Vielzahl von Funktionen innerhalb einer sehr kleinen Grundfläche vor: Dazu gehören der Polarisator, die Hohlleiterübergänge zu zwei einzelnen Verstärkern, zwei koaxiale Ausgangsanschlüsse und die zugehörige DC-Schaltung. »Die Kombination dieser Merkmale – extrem geringes Rauschen, zwei unterschiedliche Polarisationen und ein innovatives Array – bringt einen enormen technologischen Fortschritt im Bereich der W-Band-Komponenten«, fasst Neininger das Projektvorhaben zusammen.

W-Band-Datenübertragung aus dem Weltraum bereits erfolgreich getestet

Erst vergangenes Jahr wurden zum ersten Mal Satellitensignale im W-Band-Frequenzbereich aus dem Weltraum empfangen. Der Nanosatellit »W-Cube« begann im Sommer 2021 seine Reise an Bord einer Falcon-9-Rakete zum polaren Orbit und sendet seitdem erfolgreich Satellitensignale bei 75 GHz aus 500 Kilometern Höhe zur Erde. Das Fraunhofer IAF hatte für diese Mission bereits das Sendermodul des Satelliten sowie das Empfängermodul der korrespondierenden Bodenstation entwickelt.

Link zur Pressemitteilung vom 6. September 2021: https://www.iaf.fraunhofer.de/de/medien/pressemitteilungen/satellit-sendet-erstm…

Weitere Informationen:

https://www.iaf.fraunhofer.de/de/medien/pressemitteilungen/beacon.html

Media Contact

Jennifer Funk Marketing und Kommunikation
Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…