Wissenschaftler entwickeln ein Modell komplexer Flüssigkeiten: Ketchup schlägt Purzelbäume
Für die Konstruktion von Pumpen oder die Verbesserung technischer Prozesse benötigen Wissenschaft und Technik Beschreibungsmodelle. Sie machen die besonderen Eigenschaften solcher Flüssigkeiten berechenbar. Forscher der Technische Universität München (TUM) und der Eidgenössisch Technischen Hochschule Zürich (ETHZ) haben nun ein solches Modell entwickelt. In der aktuellen Ausgabe des angesehenen Journals „Physical Review Letters“ stellen sie es vor.
Das ungewöhnliche Verhalten komplexer Flüssigkeiten kennen wir aus dem Alltag: Kuchenteig steigt beim Rühren am Rührstab hoch, Ketchup wird flüssiger wenn man ihn schüttelt. Auch die Technik nutzt solche Phänomene: Wenn man eine kleine Menge langkettiger Kunststoffmoleküle zugibt, kann eine Pipeline viel mehr Erdöl transportieren. Die Polymere verringern den Fließwiderstand. Doch der Ursprung dieser Effekte war bislang unklar. Die Ingenieure waren auf Schätzungen und langwierige Versuchsreihen angewiesen.
Ein Physikerteam unter Leitung von Professor Andreas Bausch, Inhaber des Lehrstuhls für Zellbiophysik an der TU München, entwickelte nun ein Beschreibungsmodell für solche Flüssigkeiten. Experimentelles Herzstück der Arbeit sind ein feiner Strömungskanal und eine Mikrokamera. Ähnlich wie die Kamera, die bei Formel 1-Rennen von oben auf die Boxengasse blickt, beobachteten die Wissenschaftler damit die Bewegungen einzelner Polymermoleküle in der Strömung.
Aus ihren Beobachtungen leiteten sie ein theoretisches Modell für die Bewegung verschieden steifer Moleküle in der Strömung ab. Darüber hinaus gelang es ihnen auch, für von Kollegen vermutete Bewegungsmuster eine experimentelle Bestätigung zu liefern.
Herausforderung für Theorie und Experiment
„Aufgrund der unglaublich großen Zahl von Freiheitsgraden ist die Untersuchung und Beschreibung der Bewegung von Polymeren eine große Herausforderung“, sagt Markus Harasim, einer der beiden Hauptautoren. Schon ein einfaches System aus Wasser und Polymer zeigt die Effekte komplexer Flüssigkeiten. Um darin die lang gestreckten Moleküle sichtbar zu machen, markierten die Physiker die Polymere mit einem fluoreszierenden Farbstoff. So konnten sie die Bewegungen unter verschiedenen Bedingungen studieren.
Bei der mathematischen Modellierung zeigte sich zu ihrer Überraschung, dass bereits das einfache Modell eines steifen Stabes als Ausgangsbasis geeignet war. Dieses Modell verfeinerten die Wissenschaftler dann durch Berücksichtigung der Wärmebewegung, der Biegsamkeit des Moleküls und des höheren Strömungswiderstands eines gebogenen Polymers. „Da wir die mikroskopischen Mechanismen nun kennen, können wir darauf Modelle für kompliziertere Geometrien und Strömungen aufbauen. Und mit dem vorgestellten experimentellen Ansatz sollten sich diese auch beweisen lassen“, sagt Coautor Bernhard Wunderlich, der in seiner Freizeit Rapper bei der Hiphop-Band „Blumentopf“ ist.
Die Arbeiten wurden mit Mitteln der Deutschen Forschungsgemeinschaft und des Exzellenclusters Nanosystems Initiative Munich (NIM) unterstützt.
Publikation:
Direct Observation of the Dynamics of Semiflexible Polymers in Shear Flow
Markus Harasim, Bernhard Wunderlich, Orit Peleg, Martin Kröger, and Andreas Bausch,
Physical Review Letters, online, 4. März 2013 DOI:10.1103/PhysRevLett.110.108302
Link: http://link.aps.org/doi/10.1103/PhysRevLett.110.108302
Kontakt:
Prof. Dr. Andreas Bausch
Technische Universität München
Physik-Department, Lehrstuhl für Zellbiophysik (E 27)
85747 Garching, Germany
Tel.: +49 89 289 12480 – E-Mail: abausch@ph.tum.de
Internet: http://bio.ph.tum.de/home/e27-prof-dr-bausch/bausch-home.html
Links:
Interview mit Dr. Bernhard Wunderlich zu Physik und Hiphop-Musik
http://www.tum.de/studium/tumstudinews/ausgabe-012013/show/article/30330/
> Die Biophysik des Schlangenbisses
http://portal.mytum.de/pressestelle/pressemitteilungen/NewsArticle_
20110516_121215
> Biologisches Modellsystem mit „absorbierenden Zustand“
http://portal.mytum.de/pressestelle/pressemitteilungen/NewsArticle_
20111114_090808
> Modellsystem zum Gruppenverhalten von Nanomaschinen
http://portal.mytum.de/pressestelle/pressemitteilungen/news_article.
2010-09-01.0553131496
Pressebilder in der Originalauflösung:
http://www.tum.de/uploads/media/130304_Tumbling_Pressebilder.zip
Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Forschungscampus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten) und Sao Paulo (Brasilien) vertreten. www.tum.de
Media Contact
Weitere Informationen:
http://www.tum.deAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…