Zeitaufgelöste Messung molekularer Strukturdynamik
– angeregt und abgefragt durch extrem ultraviolettes Licht.
Physiker der Gruppe um Christian Ott (Abteilung von Thomas Pfeifer) am MPIK haben erstmals eine zeitaufgelöste absorptionsspektroskopische Untersuchung eines kleinen Moleküls allein mit extrem-ultravioletten (XUV) Lichtpulsen demonstriert: die photoinduzierte Strukturdynamik von Diiodmethan. Mittels der kurzen Wellenlänge von XUV-Laserpulsen können einzelne Atome im Molekül über eine wohldefinierte elektronische Anregung gezielt angesprochen werden.
Das Experiment wurde am Freie-Elektronen-Laser in Hamburg (FLASH) durch Leitung einer großen internationalen Kollaboration von Wissenschaftsteams durchgeführt. Zwei identische XUV-Pulse mit variabler Zeitverzögerung wechselwirken nacheinander mit einem Iod-Atom von CH₂I₂ (siehe Abb. 1). Die Anregung während des ersten Pulses löst die Dissoziation des Moleküls aus, die eine Strukturdeformation über einen kurzlebigen Isomer-Zustand (siehe Skizzen ①②③) beinhaltet.
Dies wiederum verändert das XUV-Absorptionsverhalten von CH₂I₂, das durch zeitabhängige Spektroskopie mit dem zweiten XUV-Puls analysiert werden kann. Die Änderung des Absorptionssignals (rot: Verstärkung, blau: Verminderung) ist bei einer Verzögerung von etwa 200 Femtosekunden (fs) deutlich sichtbar. Diese zeitaufgelöste Information über den Reaktionsverlauf durch die entsprechende transiente Molekülstruktur ② wurde durch den Vergleich von experimentellen Spektren mit Berechnungen in der Arbeitsgruppe Theoretische Chemie von Alexander Kuleff am Institut für Physikalische Chemie der Universität Heidelberg gewonnen.
Insgesamt ist diese Arbeit ein entscheidender Schritt in Richtung der Verwendung von Freie-Elektronen-Lasern für zeitaufgelöste Messungen von sich bewegenden Atomen in Molekülen (sogenannte „Molekülfilme“): In Zukunft werden noch größere Bandbreiten und mehrfarbige Modi zur Anregung und Abtastung verschiedener elektronischer Übergänge verfügbar – mit „lokaler“ atom-spezifischer spektroskopischer Auflösung. Dies zeigt auch den weiteren Weg auf, um zukünftig letztendlich die molekulare Struktur auf der fundamentalen atomaren und elektronischen Ebene zu kontrollieren.
Wissenschaftliche Ansprechpartner:
Dr. Marc Rebholz
Tel.: (+49)6221-516-335
marc.rebholz@mpi-hd.mpg.de
Prof. Dr. Alexander Kuleff
Physikalisch-Chemisches Institut
Universität Heidelberg
Tel.: (+49)6221-54-5218
alexander.kuleff@pci.uni-heidelberg.de
Dr. Christian Ott
Tel.: (+49)6221-516-577
christian.ott@mpi-hd.mpg.de
Prof. Dr. Thomas Pfeifer
Tel.: (+49)6221-516-380
thomas.pfeifer@mpi-hd.mpg.de
Originalpublikation:
All-XUV pump-probe transient absorption spectroscopy of the structural molecular dynamics of di-iodomethane
M. Rebholz, T. Ding, V. Despré, L. Aufleger, M. Hartmann, K. Meyer, V. Stooß, A. Magunia, D. Wachs, P. Birk, Y. Mi, G. Dimitrova Borisova, C. da Costa Castanheira, P. Rupprecht, G. Schmid, K. Schnorr, C. D. Schröter, R. Moshammer, Z.-H. Loh, A. R. Attar, S. R. Leone, T. Gaumnitz, H. J. Wörner, S. Roling, M. Butz, H. Zacharias, S. Düsterer, R. Treusch, G. Brenner, J. Vester, A. I. Kuleff, C. Ott and T. Pfeifer
Phys. Rev. X 11, 031001 (2021). DOI: 10.1103/PhysRevX.11.031001
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…