Zweidimensionaler Quanten-Freeze
Forschern an der ETH Zürich und dem TII Abu Dhabi ist es mit Unterstützung von Innsbrucker Quantenphysikern gelungen, die Bewegung eines winzigen Glaskügelchens in zwei Richtungen gleichzeitig in den Quanten-Grundzustand abzukühlen. Dies stellt einen entscheidenden Schritt auf dem Weg zu einer 3D-Grundzustandskühlung eines massiven Teilchens dar und eröffnet neue Möglichkeiten für den Bau von hochempfindlichen Sensoren.
In einem Hochvakuum mit Laserlicht kontrollierte Nanoteilchen gelten als vielversprechende Plattform, um die Grenzen der Quantenwelt auszuloten. Seit der Formulierung der Quantentheorie ist nämlich die Frage unbeantwortet geblieben, ab welcher Größe ein Objekt den Gesetzen der Quantenphysik und nicht den Regeln der klassischen Physik unterliegt.
Ein Team um Lukas Novotny (Zürich), Markus Aspelmeyer (Wien), Oriol Romero-Isart (Innsbruck) und Romain Quidant (Zürich) versucht im Rahmen des ERC-Synergy-Projekts QXtreme genau diese Frage zu beantworten. Ein entscheidender Schritt auf dem Weg zu diesem Ziel ist es, die in der Bewegung des Nanoteilchen gespeicherte Energie so weit als möglich zu reduzieren, das Teilchen also in den sogenannten Quantengrundzustand abzukühlen.
Kühlen in allen Dimensionen
Das Q-Xtreme-Team arbeitet seit längerem gemeinsam an der Grundzustandsabkühlung von Nanopartikeln. Mehrere Experimente in Zürich und Wien, unterstützt durch theoretische Berechnungen von Carlos Gonzalez-Ballestero und Oriol Romero-Isart von der Universität Innsbruck und dem IQOQI Innsbruck, haben zu den ersten Demonstrationen einer solchen Grundzustandskühlung eines Nanoteilchens geführt, entweder durch Dämpfung der Teilchenbewegung mittels elektronischer Steuerung (aktive Rückkopplung) oder durch Platzierung des Teilchens zwischen zwei Spiegeln (resonatorbasierte Kühlung). Bei all diesen Experimenten wurde der Grundzustand nur entlang einer der drei Bewegungsrichtungen der Teilchen erreicht, so dass die Bewegung entlang der beiden anderen Richtungen „heiß“ blieb.
„Die Abkühlung in den Grundzustand in mehr als einer Richtung ist der Schlüssel zur Erforschung neuer Quantenphysik“, betont Carlos Gonzalez-Ballestero vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften und dem Institut für Theoretische Physik der Universität Innsbruck. „Bislang war es jedoch schwierig, die Spiegel, zwischen denen das Teilchen positioniert wird, effizient mit der Bewegung des Teilchens in mehreren Richtungen in Wechselwirkung zu bringen.“ Der sogenannte „Dark State Effect“ verhindert die Abkühlung in den vollständigen Grundzustand.
Mit unterschiedlichen Frequenzen zum Ziel
Nun gelang es dem Photonik-Labor an der ETH Zürich erstmals die Grundzustandskühlung eines Nanoteilchen entlang zweier Bewegungsachsen. Dabei wird ein Glaskügelchen, das etwa tausendmal kleiner als ein Sandkorn ist, im Hochvakuum vollständig von seiner Umgebung isoliert und mit einem stark fokussierten Laserstrahl in der Schwebe gehalten und gleichzeitig bis nahe an dem absoluten Nullpunkt gekühlt. Basierend auf theoretischen Vorarbeiten des Innsbrucker Teams konnten die Schweizer Physiker das Problem des Dunkelzustands umgehen. „Wir haben dazu die Frequenzen, mit denen das Teilchen in den beiden Richtungen schwingt, unterschiedlich gestaltet und die Polarisation des Laserlichts sorgfältig eingestellt“, sagt Lukas Novotny von der ETH Zürich.
Die in der Fachzeitschrift Nature Physics erschienene Arbeit demonstriert, dass es möglich ist, den minimalen Energiezustand für alle drei Bewegungsrichtungen zu erreichen. Das neue Setup ermöglicht es auch, fragile Quantenzustände in zwei Richtungen zu erzeugen, die zum Beispiel zur Herstellung von extrem empfindlichen Gyroskopen und Sensoren verwendet werden könnten.
Die Forschungen wurden unter anderem vom Europäischen Forschungsrat ERC und der Europäischen Union finanziell unterstützt.
Wissenschaftliche Ansprechpartner:
Carlos Gonzalez Ballestero
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
t +43 512 507-52203
e carlos.gonzalez-ballestero@uibk.ac.at
w https://romeroisartgroup.com
Originalpublikation:
Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Johannes Piotrowski, Dominik Windey, Jayadev Vijayan, Carlos Gonzalez-Ballestero, Andrés de los Ríos Sommer, Nadine Meyer, Romain Quidant, Oriol Romero-Isart, René Reimann, Lukas Novotny. Nature Physics 2023 DOI: 10.1038/s41567-023-01956-1 https://www.nature.com/articles/s41567-023-01956-1 [arXiv: 2209.15326 https://arxiv.org/abs/2209.15326]
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…