"Worauf erregbare Nervenzellen so alles anspringen"
Wachstumsfaktoren im Gehirn regulieren auch Informationstransfer
Neutrophine sind Wachstumsfaktoren des Gehirns. Sie vermitteln die Entwicklung und das Wachstum von Nervenzellen, sind aber auch für das Lernen und die Gedächtnisbildung von entscheidender Bedeutung. Ein Team von Wissenschaftlern unter der Leitung von Prof. Arthur Konnerth, Institut für Physiologie der LMU, berichtet in der aktuellen Ausgabe des Fachmagazins Nature, dass einer dieser Wachstumsfaktoren auch an der Weiterleitung von Informationen im Gehirn beteiligt ist. (Bd. 419, S. 687-693, 2002). Der Wachstumsfaktor „brain-derived neurotrophic factor“, kurz BDNF, bewirkt eine massive und direkte Aktivierung von Nervenzellen durch Vorgänge, die bislang unklar waren. „Unsere Arbeit identifiziert einen grundlegend neuen molekularen Mechanismus, der für diese schnelle Aktivierung von Neuronen verantwortlich ist“, so Prof. Konnerth.
Nervenzellen sind elektrisch erregbare Zellen. Informationen werden von Neuronen entlang des Axons, dem langen Fortsatz von Nervenzellen, in Form von Aktionspotentialen weitergeleitet. An der Membran des Axons herrscht im Ruhezustand ein Ladungsunterschied, wobei die Innenseite gegenüber dem Extrazellulärraum negativ geladen ist. Wird ein Signal von dieser Nervenzelle weitergeleitet, erfolgt eine kurzzeitige Änderung dieses Membranpotentials, das sich entlang der Axonmembran fortpflanzt. Auslöser dieser Ladungsumkehr ist vor allem der Einstrom positiv geladener Natrium-Ionen in die Zelle. Spezifische Natrium-durchlässige Kanäle in der Membran öffnen sich für den Import der Ionen für kurze Zeit und schließen sich dann wieder. Das Ausgangspotential wird wieder erreicht, indem positiv geladene Kalium-Ionen durch spezifische Kalium-durchlässige Kanäle aus der Zelle ausströmen. Ein Aktionspotential wird innerhalb weniger Millisekunden aufgebaut und entlang der Axonmembran weitergeleitet, wenn die Nervenzelle „feuert“.
Das Team um Prof. Konnerth konnte zeigen, dass auch der Wachstumsfaktor BDNF, der von Neuronen produziert und in das umliegende Medium abgegeben wird, innerhalb von Millisekunden die Öffnung von Natrium-Kanälen bei der Weiterleitung von Aktionspotentialen auslösen kann, was eine Umkehr des Membranpotentials auslöst. Das neue Ergebnis ist besonders interessant, weil bisher nur Neurotransmitter, also Signalstoffe, die zwischen zwei Nervenzellen wirken, dafür bekannt waren, das Membranpotential von Neuronen innerhalb so kurzer Zeit zu verändern. Im Vergleich zu Neurotransmittern ist BDNF ein sehr großes Molekül, das sich aus zwei identischen Untereinheiten zusammensetzt.
Prof. Konnerth und sein Team konnten jetzt zeigen, wie BDNF eine Umkehr des Membranspotentials bei den Nervenzellen bewirkt. Das Neurotrophin bindet an den Rezeptor TrkB und bewirkt dadurch, dass sich die Konformation des Natrium-Kanals Nav1.9 so ändert, dass Natrium-Ionen in die Zelle einströmen können. Wurden ganz gezielt diese Kanäle blockiert, konnte BDNF keinen Ionen-Import mehr auslösen. BDNF zeigt eine Fähigkeit, die bislang nur Neurotransmittern zugeschrieben wurde: Die Änderung der Ionen-Durchlässigkeit bestimmter Zellen durch die Öffnung spezifischer Kanäle innerhalb von Millisekunden.
Neu an diesem Ergebnis ist, dass ein Ionen-Kanal in der Zellmembran einer Nervenzelle durch ein Protein, das von einem benachbarten Neuron produziert wird, geöffnet werden kann. Es ist möglich, dass auch andere Rezeptoren, die ebenso wie TrkB Wachstumsfaktoren binden können, an der Regulation der Ionen-Kanäle beteiligt sind. Mögliche Kandidaten für einen derartigen Mechanismus sind Ionen-Kanäle, die nicht sehr gut auf Ladungsänderungen in der Membran, also den bislang bekannten Mechanismus der Aktivierung, reagieren. Ihre Regulation könnte durch Wachstumsfaktoren erfolgen.
Einige Studien haben gezeigt, dass BDNF ein wichtiger Faktor für die Entwicklung und Funktion von Nervenzellen sowohl im peripheren als auch im zentralen Nervensystem ist. So spielt er z.B. eine entscheidende Rolle im Hippocampus, einer Gehirnstruktur, die mit der Bildung von Erinnerungen in Nagern und Menschen in Zusammenhang gebracht wird. Der von BDNF regulierte Natriumkanal Nav1.9 wurde bisher vor allem an sensorischen Nerven im Rückenmark untersucht. Er soll hier eine wichtige Rolle bei Mechanismen der Verarbeitung von Schmerzsignalen spielen. Die Arbeit von Prof. Konnerth und seinem Team zeigt nun erstmals, dass dieser Kanal auch im Gehirn, z.B. im Hippocampus, zusammen mit dem Neurotrophinrezeptor TrkB eine wichtige Rolle bei der Signalverarbeitung und Weiterleitung spielt.
Ansprechpartner:
Prof. Dr. Arthur Konnerth
Institut für Physiologie, LMU
Tel. +49-89-5996-511
Fax: +49-89-5996-512
e-mail: konnerth@lrz.uni-muenchen.de
Media Contact
Alle Nachrichten aus der Kategorie: Studien Analysen
Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…