Gruppendynamik bei Atomen — DESY-Forscher beobachten erstmals die kollektive Lamb-Verschiebung
Dieser Effekt – kollektive Lamb-Verschiebung genannt – konnte jetzt erstmalig von einer Forschergruppe um Dr. Ralf Röhlsberger vom Forschungszentrum DESY nachgewiesen werden.
Die Wissenschaftler von DESY, ESRF (Frankreich) und Universität Leuven (Belgien) wiesen damit einen Effekt nach, der vor mehr als 35 Jahren theoretisch vorhergesagt wurde. Die Ergebnisse des Experiments, das an der ESRF in Grenoble durchgeführt wurde, werden in der aktuellen Ausgabe der Zeitschrift Science veröffentlicht.
Die Lamb-Verschiebung – oder Lamb-Shift – ist eine kleine Änderung der Schwingungsfrequenz von Elektronen im Atom. Sie wird sichtbar, wenn man Atome mit Licht zum Leuchten anregt. Die Frequenzverschiebung entsteht dadurch, dass das angeregte Atom sein Licht erst einige Male abstrahlt und wieder selbst absorbiert bevor es in seinen Grundzustand zurückkehrt. Die Entdeckung der Lamb-Verschiebung im Wasserstoff gab 1947 den Anstoβ zur Entwicklung der Quantenelektrodynamik (QED) als einheitlicher Theorie der Wechselwirkung zwischen Licht und Materie. Für seine Entdeckung erhielt der Physiker Willis Lamb 1955 den Nobelpreis.
Wird nun ein Ensemble von vielen identischen Atomen zum Leuchten angeregt, so ist es möglich, dass das emittierte Licht eines Atoms nicht nur von sich selbst sondern auch von einem anderen Atom innerhalb der Gruppe absorbiert und wieder abgestrahlt werden kann. So ist das Licht, das von diesen Atomen ausgesendet wird, energieärmer und somit deutlich ins Rote verschoben im Vergleich zur Abstrahlung eines einzelnen Atoms.
Für ihre Experimente entwickelten die Wissenschaftler um Röhlsberger eine neue Messmethode: Sie platzierten ein Ensemble von Eisen-57-Atomen zwischen zwei nur wenige Nanometer voneinander entfernte Platinspiegel und bestrahlten diese Anordnung mit Röntgenstrahlung. Auf diese Weise konnten sie tatsächlich die vorhergesagte kollektive Frequenzverschiebung messen, obwohl man lange Zeit glaubte, dass die Atome dafür nicht weiter als eine Lichtwellenlänge voneinander entfernt sein dürften. Die Forschergruppe machte sich zunutze, dass die Strahlung der Eisen-57-Atome zwischen den Platinspiegeln enorm verstärkt wird, so dass die kollektive Lamb-Verschiebung deutlich sichtbar wird. Mit Hilfe der Mößbauerspektroskopie konnte die Verschiebung sehr genau bestimmt werden. Die gemessenen Werte stehen in perfekter Übereinstimmung mit den theoretischen Vorhersagen.
Die Experimentiermethode eröffnet außerdem neue Möglichkeiten, kollektive Effekte bei der Wechselwirkung von Licht und Materie zu studieren. So wiesen die Experimentatoren nach, dass das Licht des untersuchten atomaren Ensembles fast 100-mal schneller emittiert wurde als von einem einzelnen Atom – dieser Effekt wird Superradianz genannt. Die Superradianz ermöglicht einen sehr effizienten Übertrag von Lichtenergie in Materie und kann z.B. bei der Entwicklung neuartiger Bauelemente zur Nutzung der Sonnenenergie oder der Entwicklung von ultraschnellen Prozessoren für die optische Datenverarbeitung eine wichtige Rolle spielen.
Media Contact
Weitere Informationen:
http://www.desy.de/Alle Nachrichten aus der Kategorie: Studien Analysen
Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.
Neueste Beiträge
Überlebenskünstler im extremen Klima der Atacama-Wüste
Welche Mikroorganismen es schaffen, in den extrem trockenen Böden der Atacama-Wüste zu überleben, und welche wichtigen Funktionen sie in diesem extremen Ökosystem übernehmen – zum Beispiel bei der Bodenbildung –,…
Hoffnung für Behandlung von Menschen mit schweren Verbrennungen
MHH-Forschende entwickeln innovatives Medikament, um die Abstoßung von Spenderhaut-Transplantaten zu verhindern. Wenn Menschen schwere Verbrennungen erleiden, besteht nicht nur die Gefahr, dass sich die Wunde infiziert. Der hohe Flüssigkeitsverlust kann…
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…