Textur und Anisotropie kristalliner Stoffe

Die festkörperphysikalische Grundlagenforschung bemüht sich, die Eigenschaften kristalliner Festkörper aufgrund der Kristallstruktur zu verstehen. Untersuchungsgegenstand sind daher meist Einkristalle, deren Eigenschaften in vielen Fällen richtungsabhängig (anisotrop) sind. In den technischen Werkstoffwissenschaften dagegen stehen reale Werkstoffe im Mittelpunkt, die in den meisten Fällen einen polykristallinen Aufbau besitzen, von dem jedoch vielfach abstrahiert wird. Der Werkstoff wird dann als homogenes, meist sogar isotropes Kontinuum betrachtet, dessen Eigenschaftswerte empirisch ermittelt werden. Zwischen diesen beiden Betrachtungsweisen klafft eine Lücke, die geschlossen werden muss, wenn man festkörperphysikalische Grundlagenerkenntnisse quantitativ auf reale Werkstoffe übertragen will. Dazu ist es notwendig, das polykristalline Gefüge eines Werkstoffes durch quantitative Strukturparameter zu beschreiben. Außerdem braucht man mathematische Modelle zur Berechnung der makroskopischen Werkstoffeigenschaften aufgrund dieser Strukturparameter und der Einkristalleigenschaften.

Alle Nachrichten aus der Kategorie: Fachgebiete

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Interstellares Methan als Aminosäure-Urahn?

Gammastrahlung setzt Methan zu Glycin und anderen komplexen Verbindungen um. Gammastrahlung kann Methan bei Raumtemperatur in eine Bandbreite verschiedener Produkte umsetzen, darunter Kohlenwasserstoffe, sauerstoffhaltige Verbindungen und Aminosäuren, wie ein Forschungsteam…

Neuer Mechanismus: Wie Krebszellen dem Immunsystem entwischen

Ein internationales Team unter Federführung der Goethe-Universität Frankfurt hat einen innerzellulären Sensor identifiziert, der die Qualität sogenannter MHC-I-Moleküle überwacht. MHC-I-Moleküle helfen dem Immunsystem, kranke Zellen – zum Beispiel Tumorzellen –…

Flexible Strahlformung-Plattform optimiert LPBF-Prozesse

Neuer Ansatz in der Strahlformung macht die additive Fertigung flexibler und effizienter: Das Fraunhofer ILT hat eine neue Plattform entwickelt, mit der Laser Powder Bed Fusion (LPBF) Prozesse individuell optimiert…