Am Anfang ist das Pulver: IPHT-Physiker ermöglichen Laserfasern neuer Qualität
Wissenschaftler vom Institut für Photonische Technologien (IPHT) haben jetzt ein Verfahren entwickelt, mit dem sie für komplex zusammengesetzte Laserfasern wesentlich größere Faserkerne als bisher erzeugen können.
Schneiden, Bohren, Schweißen – in der Automobilindustrie übernehmen Faserlaser heute bereits viele dieser Aufgaben; spezialisierte Varianten kommen aber auch in der Messtechnik und der Medizin zum Einsatz. Als Faserlaser bezeichnet man dabei optische Fasern, die das Licht nicht nur passiv leiten sonst selbst aktiv als Quellen für Laserlicht dienen. Optische Fasern sind sehr dünne Glasfasern mit einem Kern von oft nur wenigen tausendstel Millimetern, in denen Licht kontrolliert geleitet wird.
Ihre Eigenschaften können durch die Auswahl der Materialien und verschiedene Strukturen gesteuert werden. „Solche Lichtleiter gezielt zu optimieren und damit maßgeschneiderte Lösungen für spezielle Anwendungen anzubieten, gehört zu den Kernkompetenzen des IPHT“, erläutert Prof. Dr. Hartmut Bartelt, Leiter der Abteilung Faseroptik.
Ihr neues Verfahren zur Herstellung von Laserfasern, das in enger Kooperation mit der Industrie entwickelt wurde, haben die Jenaer Forscher REPUSIL genannt, REaktive PUlver SInter-TechnoLogie. „Wir überwinden damit die Nachteile der etablierten Methoden und schaffen neue Potentiale für zukünftige Entwicklungen“, ist Physiker Bartelt überzeugt.
Die Herstellung von Glasfasern umfasst viele einzelne Schritte, die alle das Endergebnis beeinflussen. Am Anfang steht eine so genannte Preform, ein robuster Glasstab, der bereits alle Eigenschaften der späteren Faser besitzt. Das bisher übliche Verfahren zur Herstellung von Kernen für Faserlaser lässt sich mit den Schlagworten „aus Gas wird Glas“ umschreiben: Im Rahmen der so genannten Modifizierten Chemischen Gasabscheidung (MCVD-Verfahren) werden die gasförmigen Ausgangsstoffe auf der Innenseite eines Rohrs in Schichten aufgeschmolzen.
Damit lassen sich aber keine homogenen Kerne für aktive Laserfasern herstellen, wie sie für eine weitere Steigerung der Ausgangsleistungen erforderlich wäre. „Deshalb haben wir gemeinsam mit der Firma Heraeus ein Verfahren entwickelt, das nicht von gasförmigen Stoffen, sondern von Pulvern ausgeht“, erläutert Bartelt. An hochreines Quarzglaspulver binden er und seine Kollegen direkt die gewünschten Zusatzstoffe. Das Glaspulver wird unter Druck und Erwärmung zu einem stabilen porösen Körper gepresst und in mehreren Schritten gereinigt und verdichtet, was als „Sintern“ bezeichnet wird. Danach erfolgt bei weiter erhöhter Temperatur die Verglasung in einem Hüllrohr.
„Dieses Vorgehen liefert uns mit Seltenen Erden dotierte Materialien mit hoher Homogenität für Kerndimensionen, die mit herkömmlichen Verfahren nicht zugänglich waren“, so Bartelt. Diese neuartigen Laserfasern werden zur Zeit bei Laserherstellern getestet und haben bereits Ausgangsleistungen im Multi-Kilowatt-Bereich geliefert. Ein weiterer Vorteil für künftige Anwendungen: Der finanzielle Aufwand für das neue Verfahren ist gemessen an den Kosten pro Gramm des aktiven Materials wesentlich geringer als im MCVD-Verfahren.
Ihr Ansprechpartner:
Prof. Dr. Hartmut Bartelt
Abteilungsleiter Faseroptik
Telefon +49 (0) 3641/ 206-200
Telefax +49 (0) 3641/ 206-299
hartmut.bartelt@ipht-jena.de
Media Contact
Weitere Informationen:
http://www.ipht-jena.deAlle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…