Produktion im Mikro-Maßstab

Immer kleiner und zugleich immer vielseitiger sollen die elektronischen und elektromechanischen „Helfer“ sein, die den modernen Menschen im Alltag begleiten. Zur Entwicklung neuer, wirtschaftlich umsetzbarer Konzepte für die Mikroproduktionstechnik kann der kürzlich gestartete Bayerische Forschungsverbund Formikroprod auf ein Finanzvolumen von über fünf Millionen Euro zurückgreifen. Koordiniert wird der Verbund vom Bayerischen Laserzentrum unter der Leitung von Prof. Dr. Manfred Geiger. An drei der sieben Teilprojekte sind Lehrstühle der Universität Erlangen-Nürnberg beteiligt: der Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik von Prof. Dr. Klaus Feldmann, der Lehrstuhl für Kunststofftechnik von Prof. Dr. Gottfried W. Ehrenstein und der Lehrstuhl für Sensorik von Prof. Dr. Reinhard Lerch. Zu den Partnern zählen außerdem die TU München, die Fraunhofer-Gesellschaft und mehr als 15 zumeist bayerische Unternehmen.

Am Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik werden Wege gesucht, Mikrostrukturen bei elektronischen Schaltungen durch bleifreie Substanzen zu verbinden, die in einem automatisierten Prozess aufgetragen werden sollen. Ein Portalroboter, der nach dem kinematischen Stabgelenkprinzip aufgebaut ist, soll bleifreie Lospaste und Leitkleber punktuell, exakt und flexibel an den richtigen Stellen abgeben. Die Beweglichkeit dieses Roboters ist ursprünglich für einfachere Handhabungsaufgaben ausgelegt und soll nun einer hochkomplexen Systemumgebung angepasst werden, wie sie in der Elektronikproduktion die Regel ist. In Zusammenarbeit mit Industriepartnern wird eine Lösung angestrebt, die generell für die Flachbaugruppenfertigung tauglich ist.


Die Eignung unterschiedlicher Kunststoffe für das Laserstrahlschweißen wird gemeinsam vom Lehrstuhl für Kunststofftechnik und dem Bayerischen Laserzentrum untersucht. Für unterschiedliche, mit Füll- und Farbstoffen modifizierte Kunststoffe sollen das Durchstrahl- und Absorptionsverhalten, die Struktur im Schweißnahtbereich und die Schweißnahteigenschaften charakterisiert werden. Die Bewertung und Analyse der jeweiligen Einflussgrößen wird durch mechanische, thermoanalytische und mikroskopische Untersuchungen sichergestellt. Wenn abschließend die Zusammenhänge zwischen den verwendeten Kunststoffen bzw. Modifikationen, den jeweiligen Schweißparametern, der Anbindegeometrie und den resultierenden Bauteileigenschaften geklärt sind, lassen sich Konstruktionsrichtlinien für die Auslegung von Laserstrahlschweißnähten mit Kunststoffen erstellen.

In Fahrzeugen die Sitze zu verstellen, die Außenspiegel zu richten, die Autofenster zu öffnen und zu schließen, ist neben dem Einsatz in der Mikroproduktionstechnik als Aufgabenbereich für einen Mikroantrieb vorgesehen, der in Kooperation zwischen dem Lehrstuhl für Feingerätebau der TU München, dem Lehrstuhl für Sensorik in Erlangen und der Siemens AG entwickelt wird. Zwei Varianten, ein hochpräziser Linearantrieb und ein rotatorischer Antrieb kompakter Bauform, sollen realisiert werden. Zentrales Element beider Antriebsvarianten ist die Mikroverzahnung, die mittels modernster Lasertechnologie gefertigt wird. Damit kombiniert das Motorkonzept hohe Tragkräfte mit einem ausgezeichneten Start-Stop-Verhalten bei höchster Positioniergenauigkeit.

Die Fertigung von Mikrosystemen stellt hohe Anforderungen an die Montagetechnologie. Aus dem Bereich der Montage von Disketten-, Video und CD-ROM-Leseköpfen ist das Verfahren der Laserstrahljustage bekannt, das in den letzten Jahren am Bayerischen Laserzentrum weiterentwickelt wurde. Hiermit können vormontierte Köpfe in einem nachfolgenden Bearbeitungsschritt mit höchster Präzision justiert werden. Bei dieser konventionellen Laserstrahljustage, die auf dem Prinzip des Laserstrahlumformens basiert, wird die Tatsache ausgenutzt, dass in einem Werkstück infolge lokaler Erwärmung mit dem Laserstrahl plastische Formänderungen hervorgerufen werden können. Im Rahmen des Projektes soll nun ein Lösungsansatz zur Verkürzung der Justagezeiten von Mikrokomponenten untersucht werden. Dieser basiert auf dem laserinduzierten Abtragen von vorgespannten Schichten mittels kurzpulsigen Laserstrahlquellen (Nano-, Piko- und Femtosekundenlasern). Das Verfahren liefert einen Beitrag zur Steigerung der Flexibilität der Montage und dient damit der Qualitätssicherung bei gleichzeitig sehr hoher Genauigkeit.

Media Contact

Gertraud Pickel idw

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane

…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….

Neue Perspektiven für die Materialerkennung

SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…

Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck

Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…