Der Weg zum Wasserstofftank

Laboranlage zur Untersuchung der Wasserstoff-Speicher-Eigenschaften von Nanopartikeln

Forschungszentrum Karlsruhe entwickelt nanostrukturiertes Material für schnelle Wasserstoffspeicher

Das Auto der Zukunft fährt mit einer Brennstoffzelle und tankt Wasserstoff. Ein solches Fahrzeug zu betanken würde mit bisheriger Technologie allerdings mehr als eine Stunde dauern. Außerdem würde der Wasserstoff aus dem Tank so langsam freigegeben werden, dass er die Leistung des Antriebs begrenzt. Nun ist Wissenschaftlern des Forschungszentrums Karlsruhe ein wichtiger Schritt auf dem Weg zu besseren Wasserstoffspeichern gelungen: Mit maßgeschneiderten Nanopartikeln konnten sie die Ladezeit auf wenige Minuten verringern.

Laboranlage zur Untersuchung der Wasserstoff-Speicher-Eigenschaften von Nanopartikeln.
Erste Fahrzeuge mit Brennstoffzellen und erste Wasserstofftankstellen in Kalifornien und Japan weisen den Weg in die Zukunft. In Computer-Zeitschriften tauchen Artikel über Laptops auf, die mit Akkus aus Mini-Brennstoffzellen viele Tage lang betrieben werden können. Wichtigstes Problem der neuen Technologie ist die Speicherung des Brennmaterials Wasserstoff: Dies geschieht heute bei einem hohen Überdruck von einigen hundert Bar und bei Temperaturen unter -253°C.

Eine Alternative sind Festkörper aus so genannten Metallhydriden: Diese Materialien nehmen den Wasserstoff auf, halten ihn innerhalb ihrer atomaren Struktur fest und geben ihn bei Temperaturerhöhung wieder ab. Ein Problem derartiger Tanks war bisher die Geschwindigkeit der Wasserstoff-Aufnahme und -Abgabe: Das Betanken eines Autos dauert länger als eine Stunde, und die Leistungsfähigkeit leidet unter der zu langsamen Freisetzung des Brennstoffs.

Mit den am Forschungszentrum Karlsruhe hergestellten Nanopartikeln dauert die Betankung nur noch wenige Minuten. Möglich wurde dies durch den Einsatz von Nanotechnologie. Mit maßgeschneiderten Katalysatoren aus so genannten Titan-Nano-Clustern gelang es Forschern am Institut für Nanotechnologie, die Be- und Entladezeiten des derzeit leistungsfähigsten Wasserstoffspeicher-Materials deutlich zu verkürzen. Während man bisher mit über einer Stunde rechnen musste, bis das Speichermaterial Natriumalanat (ein Metallhydrid des Aluminiums mit der chemischen Formel NaAlH4) zu 80 % wieder aufgeladen war, ist es mit einem speziellen Typ von Titan-Nanopartikeln möglich, das Gleiche in der Rekordzeit von 7 bis 8 Minuten zu schaffen.

„Damit kommen Betankungszeiten in Reichweite, wie sie der zukünftige Nutzer eines Wasserstoffautos vom Betanken seines bisherigen Fahrzeugs gewohnt ist“, erklärt Dr. Maximilian Fichtner, der das Projekt im Forschungszentrum Karlsruhe leitet. Gegenüber der Zeit, die zum Laden eines heutigen Hochleistungsakkus für mobile Anwendungen wie Camcorder oder Laptop benötigt wird, bedeutet dies sogar eine dramatische Beschleunigung.

Bei den Titan-Nano-Clustern handelt es sich um winzige Nanopartikel, die bereits in Gramm-Mengen im Labor hergestellt werden können. Der Metallkern der Partikel besteht aus nur 13 Atomen – einem Zentralatom und einer Schale aus weiteren 12 Atomen. Stabilisiert werden die Partikel durch eine Hülle aus Lösungsmittelmolekülen, die den Metallkern umschließt. Dieser ist so klein, dass er auch mit leistungsstarken Elektronenmikroskopen nicht sichtbar gemacht werden kann. Zur Untersuchung wurden statt dessen aufwändige Analyseverfahren angewandt, wie sie an der Synchrotronstrahlenquelle ANKA des Forschungszentrums zur Verfügung stehen.

Damit die Cluster den gewünschten Effekt im Wasserstoffspeicher erzielen, wird eine geringe Menge davon mit dem Speichermaterial Natriumalanat vermischt und das Gemenge unter Luftausschluss sehr fein gemahlen. Dadurch entsteht eine innige Mischung der beiden Komponenten, ein so genanntes Nanokomposit. Dieses ist das eigentliche Speichermaterial. Die Ergebnisse der Karlsruher Forscher werden in der Juni-Ausgabe der Zeitschrift „Nanotechnology“ veröffentlicht (Nanotechnology 14, 2003, S. 778-785).

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Media Contact

Inge Arnold idw

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wegweisend für die Diagnostik

Forschende der Universität Jena entwickeln Biosensor auf Graphen-Basis. Zweidimensionale Materialien wie Graphen sind nicht nur ultradünn, sondern auch äußerst empfindlich. Forschende versuchen deshalb seit Jahren, hochsensible Biosensoren zu entwickeln, die…

Rotorblätter wiederverwenden

h_da-Team als „Kultur- und Kreativpilot*innen Deutschland“ ausgezeichnet. Rotorblätter von Windkraftanlagen wiederverwenden statt zu entsorgen: Das „Creative Lab rethink*rotor“ am Fachbereich Architektur der Hochschule Darmstadt (h_da) zeigt, dass sich hieraus Schallschutzwände…

Weltweit erstes Zentrum für Solarbatterien

Strategische Partnerschaft zur Optoionik von TUM und Max-Planck-Gesellschaft. Energie von Sonnenlicht direkt elektrochemisch speichern Optoionik als Querschnittswissenschaft zwischen Optoelektronik und Festkörperionik Bayern als internationaler als Innovationsführer bei solarer Energiespeicherung Das…