Testen – noch vor der Laborproduktion
Simulationsprogramm aus dem Weierstraß-Institut modelliert Halbleiterbauelemente
Die Miniaturisierung der Elektronikbauteile geht ungebremst weiter. Immer kleiner werden die Chips mit ihren Schaltelementen und Leitbahnen, die winzigen Sender und Empfänger für Informationen. Daher müssen die Entwickler solcher Elemente zunehmend auf die Kunst der Mathematiker und Modellierer zurückgreifen, wenn sie Bauteile neu entwerfen oder optimieren. Am Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) in Berlin hat sich eine Arbeitsgruppe auf solche Fragestellungen spezialisiert. Es geht um die Berechnung von Halbleiterbauelementen. Um solche Teile zu produzieren, ist ein technologischer Prozess nötig, der Tage bis Wochen dauert. „Das kann bis zu zweihundert einzelne Arbeitsschritte umfassen“, sagt Dr. Reiner Nürnberg vom WIAS. Zur Fertigung gehören Strukturierungs-, Beschichtungs- und Dotierungsprozesse.
Noch bevor also die komplizierten Fertigungsanlagen anlaufen – und die teuren Versuchschargen eingespeist werden -, simulieren die WIAS-Experten die Funktionsweise des neuen Bauelements. Ihr Programm dafür heißt WIAS-TeSCA. Es dient dazu, das Verhalten der Elemente während des Betriebs vorherzusagen: Welche Ströme fließen? Welche Wärme entsteht im Innern? Wie reagiert es auf Strahlen? Die Wissenschaftler greifen dabei auf ein mehr als zwanzigjähriges Know-how zurück.
Dieses Wissen hat sich unter anderem in WIAS-TeSCA niedergeschlagen. Der Name steht für „Two and three dimensional Semi-Conductor Analysis“. Zu dem als 2D-Simulator entwickelten Programm sind in den letzten Jahren zahlreiche Komponenten neu hinzugekommen. Die dritte Raumdimension ist dabei nur ein Teil der Überarbeitung. Man kann von einer dreifachen Erweiterung sprechen. Nürnberg: „Erstens haben wir zusätzliche Gleichungen integriert, die Wärme, Licht und mechanische Bauteilveränderungen abbilden. Zweitens haben wir neue nichtlineare Modelle berücksichtigt. Und dann eben die dritte Dimension.“
Was bedeutet das im Einzelnen? Wärme zum Beispiel ist immer eine Begleiterscheinung in der Halbleiterelektronik. Chips oder Laserdioden können während des Betriebs heiß werden. Diese lokale Wärmeentwicklung wirkt auf die elektronischen Eigenschaften zurück. Generationsraten und Beweglichkeiten ändern sich stark mit der Temperatur. Und das kann den normalen Betrieb eines Bauelements beeinträchtigen und gefährden, schon lange bevor es mechanisch zerstört wird.
Manche Effekte sind erwünscht, gehören also zur Funktion. Auch sie müssen berechnet werden. Etwa die Wirkung von Lichtteilchen, die auf die hochempfindlichen Oberflächen treffen. Diese nutzt man in optoelektronischen Sensoren. Die Geräte sind dann so empfindlich, dass sie ein einzelnes Photon registrieren können, weil das auftreffende Lichtteilchen eine ganze Kaskade von Reaktionen auslöst (das Prinzip ist nach dem englischen Wort für Lawine benannt: Avalanche). Auch bei Avalanche-Detektoren spielt wiederum Wärme eine Rolle.
WIAS-TeSCA simuliert nicht jedes einzelne Elektron in einem Bauelement, sondern geht von einer „Teilchenwolke“ aus. „Dabei stoßen wir aber jetzt schon an Grenzen“, berichtet Nürnberg, „denn Quanteneffekte lassen sich nicht mehr mit solchen Vereinfachungen berechnen.“ Ein Gleichungssystem mit hunderttausend Unbekannten muss das Programm schon im 2D-Fall lösen, um ein Bauelement zu simulieren. In der dritten Dimension ist man rasch bei Millionen von Variablen angelangt.
„Es ist aber unabdingbar, dass wir die Simulationsergebnisse mit Daten aus Experimenten vergleichen“, sagt Nürnberg. Daher ist die Zusammenarbeit mit anderen Forschungsinstituten sehr wichtig. Ganz eng kooperiert das WIAS zum Beispiel mit dem Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH), welches das Programm WIAS-TeSCA bei der Entwicklung von Laserdioden einsetzt. Beide Institute sind Teil des Forschungsverbundes Berlin. Über Lizenzgebühren ist das Mathematik-Institut dabei auch an Einnahmen aus Forschungsaufträgen der Industrie beteiligt.
Simulationsprogramme sind in der Elektronikbranche längst Standard. Was zeichnet WIAS-TeSCA nun aus? Die Numerik ist sehr leistungsfähig. Das heißt, die Gleichungen bilden die Wirklichkeit besonders gut ab und der Rechner spuckt rasch eine Lösung aus. Die WIAS-Entwickler betonen: „Unser Programm arbeitet stabil und bietet auch dann eine Chance auf Erfolg, wenn kommerzielle Software-Produkte an ihre Grenzen stoßen.“ Außerdem zeichnet WIAS-TeSCA eine hohe Flexibilität aus. Zum Angebot gehören schnelles Reagieren auf Kundenwünsche, der Einbau spezifischer Modelle, die gemeinsame Lösungssuche und schließlich auch die Ausführung von Auftragsrechnungen. WIAS-TeSCA ist also leistungsfähig und aktuell. Nah an der Forschung dran. „Und am Anwender“, fügt Nürnberg hinzu. „Der fast tägliche Kontakt mit den Nutzern gibt uns die entscheidenden Impulse zur Weiterentwicklung.“
Ansprechpartner: Dr. Reiner Nürnberg; Tel. 030 / 2 03 72-570; nuernberg@wias-berlin.de
Media Contact
Weitere Informationen:
http://www.wias-berlin.de http://www.fv-berlin.de http://www.leibniz-gemeinschaft.deAlle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Wegweisend für die Diagnostik
Forschende der Universität Jena entwickeln Biosensor auf Graphen-Basis. Zweidimensionale Materialien wie Graphen sind nicht nur ultradünn, sondern auch äußerst empfindlich. Forschende versuchen deshalb seit Jahren, hochsensible Biosensoren zu entwickeln, die…
Rotorblätter wiederverwenden
h_da-Team als „Kultur- und Kreativpilot*innen Deutschland“ ausgezeichnet. Rotorblätter von Windkraftanlagen wiederverwenden statt zu entsorgen: Das „Creative Lab rethink*rotor“ am Fachbereich Architektur der Hochschule Darmstadt (h_da) zeigt, dass sich hieraus Schallschutzwände…
Weltweit erstes Zentrum für Solarbatterien
Strategische Partnerschaft zur Optoionik von TUM und Max-Planck-Gesellschaft. Energie von Sonnenlicht direkt elektrochemisch speichern Optoionik als Querschnittswissenschaft zwischen Optoelektronik und Festkörperionik Bayern als internationaler als Innovationsführer bei solarer Energiespeicherung Das…