Scale-out für höchste Produktreinheit
Mikrokomponenten in einem Flüssigkeitsverteilsystem ohne aktive Flussregulierung sorgen für effizientere organische Synthese
Flüssigkeitsverteilsystem für die effiziente organische Synthese: Das System verteilt einen Flüssigkeitsstrom gleichmäßig auf sechs verschiedene Mikromischer, ohne dass eine aktive Regelung des Flusses erforderlich ist.
Die Institut für Mikrotechnik Mainz GmbH (IMM) hat ein flexibles System entwickelt, das einen Flüssigkeitsstrom gleichmäßig auf sechs verschiedene Mikromischer verteilt, ohne dass eine aktive Regelung des Flusses erforderlich ist. Das Flüssigkeitsverteilsystem wurde mit ausgewählten Prallstrahlmikromischern und speziell angepassten Trennschichtmikromischern als Flusswiderstände betrieben. Zum ersten Mal wurde solch ein Flüssigkeitsverteilsystem erfolgreich bei der Durchführung einer organischen Synthese am Beispiel von Essigsäure-n-butylamid verwendet. Mit dem Prototyp konnten auf Anhieb eine 88-prozentige Gesamtausbeute und eine Produktreinheit von bis zu 99 Prozent erzielt werden.
Mehr Durchsatz durch Scale-out oder Numbering-up – die Theorie klingt einfach: Es werden so viele Mikroreaktoren oder -mischer parallel geschaltet, bis die gewünschte Produktionsleistung erreicht ist. Doch in der Praxis stößt das Konzept schnell an wirtschaftliche Grenzen, denn mit der Zahl der Reaktoren steigt auch der Aufwand an Regeltechnik.
Das Flüssigkeits-Verteilsystem des IMM vereinfacht die Steuerung mikroverfahrenstechnischer Prozesse ganz wesentlich. So werden zur Verteilung von beispielsweise drei zu mischenden Komponenten auf sechs Mikromischer lediglich 3 Pumpen benötigt. Ein herkömmliches System würde 18 Pumpen erfordern. Die Verteilung der Flüssigkeit wird alleine durch den Druckverlust (ca. 120 Millibar) der Mischer gesteuert. Bei präzise gefertigten Mikromischern mit einheitlichem Druckverlust liegen die Abweichungen der Flüssigkeitsverteilung unter 5 Prozent. Dieses gute Resultat wurde durch die Auswahl des verwendeten Materials, Optimierung des Designs und des Herstellungsprozesses erzielt. Derzeit werden weitere Versionen des Flüssigkeitsverteilsystems entwickelt, die neben dem Einsatz des Trennschichtmischers auch Kombinationen mit weiteren Mikrokomponenten ermöglichen.
Die Entwicklung des Flüssigkeits-Verteilsystems wurde gefördert durch die Europäische Kommission (Projekt-Nr. G5RD-CT-1999-00123
Media Contact
Weitere Informationen:
http://www.imm-mainz.de/v0/vvseitend/vvpresse/presse_detail.php?id=227Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Wirkstoff-Forschung: Die Struktur von Nano-Genfähren entschlüsseln
LMU-Forschende haben untersucht, wie sich kationische Polymere beim Transport von RNA-Medikamenten auf molekularer Ebene organisieren. Kationische Polymere sind ein vielversprechendes Werkzeug für den Transport von RNA-Therapeutika oder RNA-Impfstoffen und werden…
Entwicklung klimaneutraler Baustoffe
…aus biogenen Materialien unter Einsatz phototropher Mikroorganismen. Das Fraunhofer-Institut FEP in Dresden bietet skalierbare Forschungs- und Entwicklungsmöglichkeiten, um technologische Innovationen auf neue Produktionsprozesse anzuwenden. Angesichts der steigenden Nachfrage nach klimaneutralen…
Optimiertes Notfallmanagement dank App
Wie die eGENA-App bei Notfällen in der Anästhesie hilft. Mit der eGENA-App hat die Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI) ein digitales Werkzeug geschaffen, das den Klinikalltag bei…