Glas fließt in Linsenform
Der Trend zur Miniaturisierung betrifft auch optische Bauteile. Doch bisher können Glaslinsen nicht in jeder gewünschten Abmessung hergestellt werden. Mit einem neuen Verfahren lassen sich unterschiedlich hohe Mikrolinsen in großer Stückzahl zu kleinem Preis fertigen.
Miniaturisierung wird groß geschrieben. Hersteller mikrooptischer Bauelemente verspüren eine immer größere Nachfrage nach immer kleineren Teilen. Linsen etwa werden in der Telekommunikation eingesetzt, wo sie Lichtsignale in Bündel von Glasfasern einkoppeln. Auch für Sicherheitssysteme wie Fingerabdrucksensoren sind kleinste Linsen gefragt – sei es auf Scheckkarten oder als Wegfahrsperre in Autos. Als Material für die winzigen Bauteile verwendet man üblicherweise Kunststoffe; zunehmend jedoch Borosilikatglas. Die Vorteile: Diese Glasart ist besonders kratzfest, formstabil und mechanisch belastbar. Der mikrotechnischen Strukturierung von Gläsern sind jedoch Grenzen gesetzt: Linsen, die im Plasma geätzt werden, können prozessbedingt eine bestimmte Strukturhöhe nicht überschreiten. Optische Eigenschaften wie die Brennweite können allerdings nur über Material oder Krümmung an die jeweilige Anwendung angepasst werden. Ist das Material festgelegt, kann dies nur durch unterschiedliche Linsenform und -höhe geschehen. Plasmaätzen im Vakuum ist zeitaufwändig und teuer. In die luftleere Kammer strömt Gas, das zu Plasma ionisiert wird und das Glas langsam abbaut.
Wissenschaftler vom Fraunhofer-Institut für Siliziumtechnologie ISIT haben ein neues Herstellungsverfahren entwickelt, das enorme Vorteile bietet. „Mit dem Glass Flow Process können wir die Herstellungskosten auf ein Zehntel reduzieren“, betont Ingenieur Peter Merz. „Zudem lassen sich Verhältnisse von Höhe : Dicke gleich 1:1 erreichen.“ Für eine 0,1 Millimeter breite Linse heißt das: Sie kann mit bis zu 100 Mikrometern etwa so hoch sein wie ein menschliches Haar. Beim Plasmaätzen hingegen erreicht sie nur ein Fünftel dieses Werts.
Merz erklärt den Produktionsprozess der viskosen Deformation folgendermaßen: „Ein Siliziumwafer dient als Urform. Ein schnelles Ätzverfahren erzeugt darin viele kleine Vertiefungen, die dem gewünschten Durchmesser der Linsen entsprechen. Unter Vakuum wird danach eine Glasplatte aus Borosilikatglas mit der Urform dicht verbunden. Beim Erhitzen erweicht das Glas und sinkt in die Vertiefungen.“ Die Oberflächenform sowie die Höhe der Linsen wird beim Glas Flow Process durch das zeitliche Temperaturprofil bestimmt. Dank des kontaktlosen Herstellungsprinzips weisen die gefertigten Bauelemente eine extrem niedrige Oberflächenrauhigkeit auf. Daher müssen sie nicht extra nachbearbeitet werden.
Ansprechpartner: Dr. Peter Merz, Telefon: 04821 / 17-4513, Fax: -4590, merz@isit.fraunhofer.de
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…
Wenn Hepatitis-E-Viren Nervenzellen angreifen
Hepatitis-E-Viren (HEV) verursachen normalerweise Leberinfektionen. Sie können aber auch andere Organe befallen und insbesondere neurologische Erkrankungen auslösen. Über die Details ist noch wenig bekannt. Ein Forschungsteam um Michelle Jagst und…
Was T-Zellen im Tumor müde macht
Detaillierte Analyse im Journal Blood von Extramedullären Läsionen beim multiplen Myelom und neue Therapieansätze. Die extramedulläre Erkrankung (EMD) ist ein Hochrisikofaktor beim Multiplen Myelom. Angela Riedel und Leo Rasche vom…