Mit dem Zeichendreieck gegen die Bauteilkiller
Forschungszentrum Karlsruhe entwickelt neue graphische Methode zur Verbesserung von mechanischen Bauteilen
Kerben sind Schwachstellen, an denen ein Bauteil häufig versagt. Durch eine Formgebung nach dem Vorbild der Natur mit der von Professor Claus Mattheck entwickelten CAO-Methode (Computer Aided Optimization) können Kerben so optimiert werden, dass hier keine Spannungsspitzen mehr auftreten. Für diese Optimierung waren früher komplexe mathematische Werkzeuge, die so genannte Finite-Elemente-Methode und leistungsfähige Computer notwendig. Mit einem neuartigen Ansatz kann die optimale Kerbform seit einigen Jahren schon mit einem Taschenrechner ermittelt werden. Nun ist die Methode so weit vereinfacht, dass ein einfaches Geodreieck für eine Optimierung ausreicht. Die neue graphische Methode, die „Methode der Zugdreiecke“, versetzt auch kleine Unternehmen und Handwerker in die Lage, gestaltoptimierte Bauteile herzustellen: Mechanisches Verständnis ersetzt schwierige Berechnungen.
An einer nichtoptimierten Kerbform entstehen hohe Spannungsspitzen, so genannte Kerbspannungen. Bei Belastung können sich dort Risse bilden, die schließlich zum Versagen des Bauteils, zum Bruch, führen.
Im Forschungszentrum Karlsruhe entwickelt Professor Dr. Claus Mattheck mit seinen Mitarbeitern seit Ende der 80er Jahre Methoden zur Optimierung von Bauteilen nach dem Vorbild der Natur. Mittels der CAO-Methode (Computer Aided Optimization) lässt sich die Spannungsverteilung an einem vorgegebenen Bauteil ermitteln und dessen Form so optimieren, dass Spannungsspitzen vermieden werden. Die Belastung verteilt sich gleichmäßig über die Oberfläche und konzentriert sich nicht mehr um einen Punkt. Eine weitere Methode, die Soft Kill Option (SKO), eliminiert wenig belastete Bereiche in den Bauteilen und reduziert damit das Gewicht. CAO und SKO werden seit vielen Jahren in der Industrie – insbesondere im Automobilbau – erfolgreich eingesetzt, um Bauteile haltbarer und leichter zu machen.
Zur Berechnung optimaler Bauteilformen setzen Konstrukteure komplexe mathematische Werkzeuge ein: die Finite-Elemente-Methode. Für deren Einsatz sind nicht nur aufwändige Soft- und Hardware notwendig, sondern auch spezialisiertes Ingenieur-Know-how. Kleinunternehmen und Handwerksbetrieben blieb die Tür zur Bauteiloptimierung nach dem Vorbild der Natur deshalb weitgehend verschlossen. Das wird sich nun ändern.
„Vor zwei Jahren haben wir schon einen großen Schritt in Richtung Vereinfachung der Anwendung getan: Mit nur wenigen Formeln und einem Taschenrechner konnten für den praktischen Gebrauch hinreichend optimierte Bauteile konstruiert werden“, erläutert Professor Dr. Claus Mattheck, Leiter der Abteilung Biomechanik im Institut für Materialforschung des Forschungszentrums Karlsruhe. „Jetzt ist uns noch einmal eine deutliche Vereinfachung gelungen. Mit einem Geodreieck – mit etwas Übung sogar frei Hand – gelingen in zwei Minuten Optimierungen, für die ein Profi früher mehrere Tage und eine teure Ausrüstung gebraucht hat.“
Die neue graphische Methode, die „Methode der Zugdreiecke“, beruht auf einem einfachen Verfahren: Eine Kerbe wird symmetrisch durch ein (gedachtes) Seil überbrückt. Entlang dieses Seils läuft die erste Konturlinie der Konstruktion, die – am Beispiel einer 90°-Ecke – mit den Wänden einen 45°-Winkel bildet. In der Mitte der Konturlinie (des gedachten Seils) wird nun ein neues Seil angesetzt, diesmal mit einem Winkel von 22,5°, also dem halben Winkel des ersten Seils; die Prozedur wird noch ein weiteres Mal mit einem Winkel von 11,25° wiederholt. Die entstehende Fläche zwischen den Seilen und dem Bauteil wird „aufgefüllt“. Die verbliebenen Knicke werden, außer dem unteren 45°-Knick, ausgerundet. Die entstandene Konstruktion weist praktisch keine Spannungsspitzen mehr auf. Das Verfahren kopiert letztlich die Brettwurzeln der Bäume, die ebenfalls die scharfe Ecke zwischen Stamm und Erdoberfläche wie ein Seil überspannen.
„Die graphische Methode versetzt nun auch kleine Unternehmen und Handwerksbetriebe in die Lage, gestaltoptimierte Bauteile nach dem Vorbild der Konstruktionen der Natur zu entwickeln“, freut sich Professor Mattheck. „Ein wenig mechanisches Verständnis ersetzt aufwändigste Computersimulationen.“
Die so gewonnenen Kurven haben identische Formen und sind nur gestaltähnlich vergrößert oder verkleinert. Sie werden voraussichtlich künftig per Mausklick in modernen CAD-Systemen verfügbar sein. Damit ist das „Aus“ der alten Ingenieurkerbe, die scharfe Ecken mit Kreisradien ausrundet und damit oft Restkerbspannungen erzeugt, nun wohl endgültig eingeläutet.
Praktisch bedeutet das: weniger Ermüdungsbrüche durch die als Bauteilkiller wirkenden Kerbspannungen und damit deutlich erhöhte Lebensdauer der mechanischen Bauteile.
Media Contact
Weitere Informationen:
http://www.fzk.deAlle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…