Studenten entwickeln Lagesteuerung für Nachrichtensatelliten
Studenten der TU Darmstadt waren an der Entwicklung eines Nachrichtensatelliten beteiligt, der jetzt mit einer Ariane 5 erfolgreich gestartet wurde. Im Rahmen von zwei Diplomarbeiten an der TUD wurden als Stabilisierungssystem für den Nachrichtensatelliten AMSAT-Phase 3-D sogenannte „Drallräder“ neu entwickelt.
Die drei Drallräder sorgen für die Ausrichtung des Satelliten im Raum, sodass dessen Antennen stets Richtung Erde zeigen. Die Drallräder, deren Achsen in unterschiedlichen Raumrichtungen liegen, werden individuell beschleunigt oder gebremst und dadurch der Satellit gedreht. Die gängige Lösung besteht meist darin, dass durch kleine Gasdüsen eine Drehung des Satelliten erfolgt. Da die Solarzellen des Satelliten die notwendige elektrische Energie liefern, besitzt das System eine im Prinzip unbegrenzte Lebensdauer.
Im Rahmen seiner Diplomarbeit entwickelte Michael Scharfe die magnetische Drallradlagerung, während sein Studienkollege Ralf Zimmermann (beide am Institut für Elektromechanische Konstruktionen der TUD) für den Drallradantrieb verantwortlich war. Die Lagerung der Räder im Vakuum des Weltraums bereitete ein besonderes Problem, da herkömmliche Lager unter diesen Bedingungen versagen und ihre Reibung eine unzulässige Störung der Funktion darstellt. Deshalb wurde eine magnetische Lagerung ohne mechanische Berührung gewählt. Dies bedeutete, dass auch für den Antrieb nach einer neuen Lösung gesucht werden musste: der Läufer des Motors wurde zu einem integralen Teil des Drallrades gemacht, sodass alle elektrischen Teile des Systems feststehen.
Der Bau von Magnetlagern für die Schwerelosigkeit scheint wegen der kleinen Kräfte eine einfache Aufgabe zu sein. Jedoch sollten die Drallräder auch unter irdischen Bedingungen geprüft werden können, sodass die Magnetlager deren Gewicht tragen können mussten. Außerdem waren für die Aufnahme der Beschleunigungskräfte beim Start besondere Maßnahmen zu treffen. Der rotierende Teil jedes Drallrades besitzt eine Masse von 3,5 kg und einen Durchmesser von 280 mm, der Durchmesser des Magnetlagers beträgt 120 mm und der magnetisch eingestellte Luftspalt ist 1 mm breit. Der Antrieb erfolgt berührungslos über feststehende Statorspulen und mit dem Drallrad umlaufende Dauermagnete.
Die Ariane 5 mit dem AMSAT-Phase 3-D startete am frühen Morgen des 16. November 2000 um 2.07 Uhr deutscher Zeit in Kourou, der Satellit wurde 43 Minuten nach dem Start in einer Höhe von 5300 km über dem Indischen Ozean von der Trägerrakete erfolgreich getrennt.
Während Nachrichtensatelliten normalerweise von kommerziellen Betreibern genutzt und finanziert werden, ist AMSAT P 3-D der bisherige Höhepunkt der nichtkommerziellen Entwicklung von Satelliten durch Funkamateure mehrerer Länder. Er soll der internationalen Satellitenkommunikation in unterschiedlichen Betriebsarten und auf unterschiedlichen Frequenzbändern zwischen Funkamateuren dienen. Der Satellit wiegt etwa eine halbe Tonne, er hat mit ausgebreiteten Solarzellen einen Durchmesser von etwa sechs Metern und soll in etwa zwei Jahren eine stabile, stark elliptische Endbahn mit Abständen zwischen 4000 km und 47 000 km von der Erde erreichen. Nach Erreichen seiner endgültigen Umlaufbahn wird der Satellit, der sich derzeit im Testbetrieb befindet, weltweit für alle Amateurfunker zur Verfügung stehen.
Funkamateure aus Belgien, Brasilien, Kanada, Deutschland, England, Finnland, Japan, Russland, Slowenien, Südafrika, Tschechien, Ungarn und den USA waren am Bau des Satelliten beteiligt und hatten Teilaufgaben übernommen. Die Federführung lag bei AMSAT-Deutschland, die Leitung des Projektes hatte die Universität Marburg.
Weitere aktuelle Informationen und Bilder im Internet: www.amsat-dl.org
Pressekontakt: Prof. Dr.-Ing. Bernhard Cramer, Institut für Elektromechanische Konstruktionen, TU Darmstadt, Tel.: 06151/16-2296 oder 06151/52206
Weitere Informationen finden Sie im WWW:
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…