"Haifischhaut" für Flugzeuge
Inhalt des Programms, das im Rahmen von 13 Einzel- und Verbundprojekten über einen Zeitraum von 6 Jahren durchgeführt wird, ist die Erarbeitung von wissenschaftlichen Grundlagen zur Funktionalisierung von Oberflächen, die nach thermischer Aktivierung adaptive, also selbst anpassende, Eigenschaften ausbilden.
Zu solchen Eigenschaften zählen zum Beispiel die Selbstheilung bei lokaler Schädigung der Oberfläche, die Freisetzung von Schmierstoffen bei aufkommender Reibung, die Ausbildung von Nanostrukturen zum Abweisen von Flüssigkeiten (ähnlich dem Lotus-Effekt) sowie integriert eingebrachte Sensor-/Aktuatorelemente, die bei hohen Belastungen vor der Zerstörung der Werkstoffoberfläche warnen. Von der Natur lernend, sollen also für Werkstoffe Oberflächen mit Eigenschaften ähnlich denen des biologischen Vorbilds Haut entwickelt werden.
Die große Herausforderung für die Wissenschaftler besteht darin, vielfältige Eigenschaften bei Temperaturen oberhalb von 400°C zu erzielen und zu erhalten. Hierbei betreten die beteiligten Forschergruppen allesamt wissenschaftliches Neuland.
Die Koordinierung des im ersten 3-jährigen Förderabschnitt mit 5,5 Mio. Euro ausgestatteten Schwerpunktprogramms wird vom Mit-Initiator, Prof. Dr.-Ing. Christoph Leyens, Lehrstuhl Metallkunde und Werkstofftechnik der Cottbus Brandenburgischen Technischen Universität (BTU), wahrgenommen. Der BTU-Professor ist im Schwerpunktprogramm selbst mit zwei wissenschaftlichen Teilprojekten vertreten. Gemeinsam mit Wissenschaftlern der RWTH Aachen entwickelt er neuartige Dünnschichtsysteme, die Bauteiloberflächen aufgrund ihrer chemischen Zusammensetzung sowie ihrer besonderen Nanolaminatstruktur revolutionäre Eigenschaften verleihen, indem sie die Hitzebeständigkeit und Härte von Keramik mit der Bearbeitbarkeit und Schadenstoleranz von Metallen vereinen. Darüber hinaus will Prof. Leyens zusammen mit Forschern des Deutschen Zentrums für Luft- und Raumfahrt e.V., Köln, der DECHEMA e.V., Frankfurt/Main sowie der Technischen Universität Berlin eine spezielle Oberflächenstruktur für hoch belastete Turbinenschaufeln entwickeln. Entsprechende Folien, die Flugzeugen eine „Haifischhaut“ verleihen und dabei helfen, erhebliche Mengen Kerosin durch einen verminderten Luftwiderstand einzusparen, wurden bereits erfolgreich getestet. Der BTU-Professor und seine Forscherkollegen streben mit ihrer Neuentwicklung nun Einsatztemperaturen bis etwa 1200°C an, wie sie in Flugtriebwerken herrschen. Ziel ist es dabei, den Verbrauch und damit auch die Schadstoffemission von Flugzeugantrieben zu verringern.
Ein weiteres an der BTU Cottbus gefördertes Projekt wird von Prof. Dr. Michael Scheffler, Inhaber des neu gegründeten Lehrstuhls Leichtbaukeramik, geleitet. In enger Kooperation mit Wissenschaftlern der Universität Bayreuth werden Schichtsysteme zur Herstellung adaptiver Oberflächen zunächst als Kunststoffschichten mit Hilfe sogenannter präkeramischer Polymere aufgebracht. Die dafür verwendeten siliciumorganischen Verbindungen, darunter auch die bekannten Silicone, können wie Kunststoffe verarbeitet und unter bestimmten Reaktionsbedingungen in spezieller Reaktionsatmosphäre zu keramischen Schichten umgewandelt werden. Mit Hilfe von Füllstoffen, die im Polymer vermischt auf die Oberfläche der zu funktionalisierenden Metalle aufgebracht werden, ist die Steuerung der Schichteigenschaften in weiten Grenzen möglich.
Die Einsatzgebiete solcher Schichtsysteme sind vielfältig: so können zum Beispiel wasserabweisende Schichten genutzt werden, um die Innenoberfläche chemischer Großreaktoren zur Treibstoffherstellung vor Korrosion durch Wasserdampf zu schützen oder mechanisch hoch belastete Teile können die Reibung selbst verringern, indem Sie ab einem bestimmten Druck auf ihre Oberfläche Schmierstoffe freisetzen.
Obwohl es sich beim Schwerpunktprogramm um ein von der Deutschen Forschungsgemeinschaft gefördertes Programm handelt, das wissenschaftlich überwiegend auf Grundlagenuntersuchungen ausgerichtet ist, haben viele Firmen ihr Interesse an einer Mitarbeit bekundet oder sind bereits Kooperationspartner. Grund dafür sind die zahlreichen Anwendungsmöglichkeiten der Forschungsergebnisse, die von der chemischen Industrie über Umwelttechnologie bis hin zur Luft- und Raumfahrt reichen.
Mit der Bewilligung durch die Deutsche Forschungsgemeinschaft fließen an die BTU Cottbus über die kommenden drei Jahre insgesamt rund 1 Mio. Euro Forschungsmittel, über die vier Mitarbeiterstellen, davon drei für wissenschaftliche Mitarbeiter und eine Koordinierungsstelle, sowie Investitions- und Sachmittel finanziert werden können.
Ansprechpartner an der BTU:
Prof. Dr.-Ing. Christoph Leyens (Projektkoordinator und Antragsteller),
Tel.: 0355/69-2815; Email: Leyens@tu-cottbus.de
Prof. Dr. Michael Scheffler (Antragsteller), Tel. 0355/69-3622;
Email: Scheffler@tu-cottbus.de
Media Contact
Weitere Informationen:
http://www.tu-cottbus.deAlle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…