Edelmetall-Katalysatoren sparsam auftragen

Diese Lösung enthält das Vorläufermaterial, aus dem die Forscherinnen und Forscher in elektrochemischen Experimenten winzige Goldpartikel herstellen. © RUB, Marquard (Dieses Foto darf nur für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum im Kontext dieser Presseinformation verwendet werden.)

Anschließend zeigten die Wissenschaftlerinnen und Wissenschaftler, dass die so beschichtete Elektrode effizient die Sauerstoffreduktion katalysieren konnte, welche der limitierende chemische Prozess in Brennstoffzellen ist.

Das Verfahren beschreibt das Team um Prof. Dr. Kristina Tschulik und Mathies Evers von der Bochumer Forschungsgruppe für Elektrochemie und Nanoskalige Materialien in der Zeitschrift „Angewandte Chemie“, online vorab veröffentlicht am 11. April 2019.

Partikel von gleicher Größe herstellen

Die Gold-Nanopartikel stellte die Forschungsgruppe mithilfe von Mizellen her. Zunächst bestanden die Partikel aus einem Vorläufermaterial, nämlich Chlorgoldsäure, die in eine äußere Hülle aus einem Polymer eingepackt war. Der Vorteil: „Wenn wir Gold-Nanopartikel mithilfe von Mizellen herstellen, haben die Nanopartikel alle eine nahezu identische Größe“, sagt Kristina Tschulik, die Mitglied im Exzellenzcluster „Ruhr Explores Solvation“, kurz Resolv, ist.

Denn in die kleinen Mizellen passt nur eine bestimme Beladung des Vorläufermaterials, aus dem ein einzelnes Partikel mit einer bestimmten Größe entsteht. „Da unterschiedlich große Partikel unterschiedliche katalytische Eigenschaften besitzen, ist es wichtig, die Partikelgröße über die Beladungsmenge der Mizelle zu kontrollieren“, ergänzt Tschulik.

Gleichmäßige Beschichtung auch bei komplexen Oberflächen

Die zu beschichtende zylinderförmige Elektrode tauchten die Wissenschaftlerinnen und Wissenschaftler in eine Lösung mit den beladenen Mizellen ein und legten eine Spannung an der Elektrode an. Durch die zufällige Bewegung der Mizellen in der Lösung schlugen sie im Lauf der Zeit auf der Elektrodenoberfläche ein.

Dort platzte die äußere Hülle auf und die Gold-Ionen aus der Chlorgoldsäure reagierten zu elementarem Gold, welches an der Elektrodenoberfläche haften blieb. Und zwar in Form einer gleichförmigen Schicht aus Nanopartikeln. „Mit Standardmethoden lassen sich nur flache Substrate gleichmäßig beschichten“, erklärt Tschulik. „Mit unserem Verfahren können auch komplexe Oberflächen gleichmäßig mit einem Katalysator beladen werden.“

Abgeschiedene Menge genau kontrollierbar

Während die Gold-Ionen aus der Chlorgoldsäure zu elementarem Gold reagieren, fließen Elektronen. Den so entstehenden Stromfluss können die Chemikerinnen und Chemiker messen und daraus genau ableiten, wie viel Material beim Beschichten der Elektrode verbraucht wurde. Das Verfahren registriert dabei den Einschlag jedes einzelnen Partikels und auch dessen Größe.

Die mit dem neuen Verfahren beschichteten Elektroden testeten die Wissenschaftler erfolgreich für die Sauerstoffreduktionsreaktion. Sie erzielten dabei eine ebenso hohe Aktivität wie für nackte Goldnanopartikel, die ohne äußere Hülle aufgetragen wurden. Aufgrund der gleichmäßigen Beschichtung der Oberfläche beobachteten sie zudem schon bei elf Prozent Bedeckung eine fast ebenso hohe Reaktionsrate wie für vollständig mit Gold bedeckte Elektroden und massive Goldelektroden.

Förderung

Die Arbeiten wurden finanziell unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC 2033) und des Graduiertenkollegs GRK2376/331085229. Weitere Förderung kam vom Projekt „IMPRS-Surmat“, vom Bundesministerium für Bildung und Forschung im Rahmen des Projekts #03F0523C-CO2EKAT, dem Europäischen Forschungsrat (ERC-725915) und vom NRW-Rückkehrprogramm des Landes NRW.

Prof. Dr. Kristina Tschulik
Lehrstuhl für Analytische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 29433
E-Mail: nanoec@rub.de

Mathies V. Evers, Miguel Bernal, Beatriz Roldan Cuenya, Kristina Tschulik: Constructive nano‐impacts – One by one synthesis of individual nanoparticles, in: Angewandte Chemie International Edition, 2019, DOI: 10.1002/anie.201813993

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Menschen vs Maschinen – Wer ist besser in der Spracherkennung?

Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…