Kühlsystem ohne schädliche Kältemittel

Aufbau eines magnetokalorischen Kühlsystems. © Fraunhofer IPM

Weltweit arbeiten viele Gruppen an Kühlschränken, industriellen Kühlsystemen und Klimaanlagen, die die Wärme mithilfe magnetokalorischer Materialien pumpen (siehe Kasten). Der hierbei durch Magnetisierung erzeugte Zyklus von Erwärmen und Abkühlen lässt sich hervorragend zur Kühlung nutzen.

Auch am Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg setzen der Physiker Dr. Kilian Bartholomé und sein Team auf diese Technologie, um ein äußerst effizientes Konzept für die Wärmeübertragung zu entwickeln, das ohne schädliche Kältemittel auskommt.

Der Bedarf an einer innovativen Kühltechnologie ist groß. Denn die heute üblichen fluorierten Kohlenwasserstoffe (FKW) haben ein hohes Treibhauspotenzial. Die EU hat ihre Verwendung daher deutlich eingeschränkt. Als Alternative zu FKW gibt es natürliche Kältemittel, wie zum Beispiel Butan oder Propan. Diese Gase werden in Haushaltskühlschränken eingesetzt. Sie sind jedoch brennbar.

Die in Haushaltskühlschränken enthaltene Menge gilt als gefahrlos. Für große Kühlanlagen wie zum Beispiel in Supermärkten sind sie jedoch keine Option. Die Industrie arbeitet an alternativen Kältemitteln. Doch bis jetzt gibt es keine überzeugenden Lösungen.

Umweltfreundliche Lanthan-Eisen-Silizium-Legierung als magnetokalorisches Material

Ein magnetokalorisches Kühlsystem kommt ganz ohne schädliche Kältemittel aus. Als magnetokalorisches Material verwenden die Forscherinnen und Forscher eine umweltfreundliche Lanthan-Eisen-Silizium-Legierung, die sich beim Anlegen eines Magnetfeldes erwärmt und beim Abschalten wieder abkühlt. Zum Abführen der entstandenen Wärme hat Kilian Bartholomé mit seinem Team ein besonderes Verfahren entwickelt und auch schon patentiert.

Er setzt beim Bau seiner Kältemaschine auf die Nutzung latenter Wärme – das ist die Energie, die eine Flüssigkeit zum Verdampfen benötigt. »Da Wasser sehr viel Energie aufnimmt, wenn es vom flüssigen in den gasförmigen Zustand übergeht, nutzen wir den Verdampfungsprozess, um die Wärme zu übertragen«, erklärt der promovierte Physiker. »So kann die thermische Energie sehr effizient übertragen werden.«

Auf die Idee, den Verdampfungsprozess für den Wärmetransport zu nutzen, kamen Kilian Bartholomé und sein Kollege Jan König durch Heatpipes, die als Röhrenkollektoren bei Solaranlagen oder zur Computerkühlung eingesetzt werden. Die Heatpipes bestehen aus einem luftleeren Rohr, in das etwas Flüssigkeit eingeschlossen ist. Wird die eine Seite des Rohres erwärmt, verdampft das Fluid auf dieser Seite und kondensiert auf der kalten Seite. Dabei werden hohe Wärmeübertragungsraten erreicht.

Die magnetokalorische Heatpipe, die am Fraunhofer IPM entwickelt wird, ist allerdings wesentlich komplexer. Sie besteht aus vielen kleinen Kammern, in denen sich das magnetokalorische Material befindet. Damit die Legierung vom Wasserdampf optimal durchdrungen werden kann, hat es eine feinporöse Struktur. Das Rezept für die Herstellung der porösen Legierung stammt von Dr. Sandra Wieland und Dr. Martin Dressler vom Fraunhofer-Institut für Fertigungstechnik und angewandte Materialforschung IFAM.

Neuer Weltrekord für magnetokalorische Kühlsysteme

Um die Effizienz weiter zu steigern, ordnet Bartholomé die Segmente der Heatpipe kreisförmig an und lässt in der Mitte einen Magneten rotieren. Wenn der Demonstrator Ende des Jahres fertig ist, soll er eine Leistung von 300 Watt haben. Zum Vergleich: Der Kompressor eines Haushaltskühlschranks hat eine Leistung von 50 bis 100 Watt. Schon jetzt kann das System mit einer sehr hohen Frequenz gefahren werden.

Daher hat sich die Freiburger Forschergruppe vorgenommen, mit dem Demonstrator einen Weltrekord für magnetokalorische Kühlsysteme zu brechen – und zwar bezüglich der Systemfrequenz. Das langfristige Ziel ist, 50 Prozent des theoretisch maximalen Wirkungsgrades zu erreichen. Vergleichbare bisherige Systeme erzielen heute rund 30 Prozent.

Die Industrie zeigt bereits großes Interesse, zum Beispiel die Philipp Kirsch GmbH, die Spezialkühlschränke für medizinische Labore, Apotheken und Krankenhäuser herstellt. Das deutsche Traditionsunternehmen arbeitet in einem vom Bundeswirtschaftsministerium geförderten Projekt mit dem Fraunhofer IPM zusammen.

»Wir wollen auf Basis der Magnetokalorik ein Minus-86-Grad-Gerät auf den Markt bringen«, sagt Geschäftsführer Jochen Kopitzke. »Die Magnetokalorik hat ein sehr großes disruptives Potenzial und könnte die Kompressorkühlung mittelfristig ablösen. Wir sehen da einen klaren Markt, den wir uns erschließen können.«

https://www.fraunhofer.de/de/presse/presseinformationen/2019/august/kuehlsystem-…

Media Contact

Holger Kock Fraunhofer Forschung Kompakt

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…