Mikrostrukturen mit dem Laser ätzen

Strukturierungsprozess von Glas durch direkte Laserablation bei der Verwendung von ultrakurzen Laserpulsen. Fraunhofer ILT, Aachen / Volker Lannert.

Am Anfang dieser neuen Methode stand ein überraschender Effekt: Wenn Glas mit dem Ultrakurzpulslaser in der richtigen Weise bestrahlt wird, wird es so modifiziert, dass es deutlich empfindlicher für ein anschließendes nasschemisches Ätzverfahren wird. Und zwar hundert- bis tausendfach.

Man kann also einen Laserfokus von wenigen Mikrometern Durchmesser durch einen Glasblock führen und anschließend auf seiner Spur eine feine Röhre durch das Volumen ätzen. So lassen sich kleinste Löcher erzeugen, komplette Mikrofluidik-Systeme in das Volumen schreiben oder auch Schnitte mit hoher Kantenqualität herstellen.

Ergebnisse im Forschungsprojekt Femto Digital Photonic Production

Bevor dieser Effekt für industrielle Verfahren genutzt werden kann, müssen eine Reihe von Fragen beantwortet werden: Was sind die Wechselwirkungsprozesse? Bei welchen Materialien funktioniert das? Was sind die optimalen Prozessparameter? Welche Prozesstechnik ist nötig?

Die Beantwortung dieser Fragen ist ein Ziel des BMBF-geförderten Verbundprojektes »Femto Digital Photonic Production«. Seit 2014 arbeiten in dem Projekt Partner von drei Lehrstühlen der RWTH Aachen University, dem Fraunhofer-Institut für Lasertechnik ILT und sechs Firmen an der Erforschung neuartiger Effekte bei der Bearbeitung von transparenten Materialien mit ultrakurzen Laserpulsen.

Inzwischen wurde ein Demonstrator entwickelt, an dem sich verschiedene Materialien und Prozessparameter vergleichen lassen. Das selektive Laser-Ätzen (englisch Selective Laser Etching SLE) wurde für mehrere Glasmaterialien untersucht, so zum Beispiel für Quarzglas, Saphir, Borofloat 33 und Corning Willow. In Borofloat 33 wurden Ätz-Selektivitäten zwischen laserstrukturierten und unstrukturierten Bereichen von etwa 1000:1 erreicht, in Willow-Gläsern etwa 100:1.

Nächstes Ziel: Prozessverständnis verbessern

In der nächsten Phase des Projektes bis 2019 soll das Prozessverständnis verbessert werden. Dafür werden am Lehrstuhl für Lasertechnik LLT der RWTH Aachen verschiedene Experimente durchgeführt, parallel laufen am Lehr-/Forschungsgebiet für Nichtlineare Dynamik der Laser-Fertigungsverfahren NLD komplexe Simulationen. Der Lehrstuhl für Technologie Optischer Systeme TOS konzentriert sich auf die Optimierung der Optik in den Systemen.

Bei der Entwicklung der Prozesstechnik arbeiten die Wissenschaftler mit drei Herstellern von Laserstrahlquellen (Amphos, Edgewave, Trumpf) sowie drei Systemanbietern (4Jet, LightFab, Pulsar Photonics) zusammen. Gemeinsam wollen sie sowohl Multistrahlsysteme für großflächige Anwendungen als auch kleinere Systeme für die Mikrobearbeitung entwickeln.

Die Firma LightFab GmbH, ein Start-up von ehemaligen Mitarbeitern des Lehrstuhls für Lasertechnik der RWTH Aachen, nutzt das selektive laserinduzierte Ätzen zur Fertigung von 3D-Präzisionsteilen aus Quarzglas. Die Maschine dafür, der LightFab 3D Printer, wurde auf der Photonics West 2016 mit dem Prism Award geehrt. Sie steigert die Produktivität des subtraktiven 3D-Drucks von Glasbauteilen für Prototypen und Serien und mit den Hochgeschwindigkeitsmodulen ermöglicht sie sogar die Massenproduktion mit dem SLE-Verfahren.

Anwendungspotential von Biomedizin bis Elektronik

Schon heute sehen die Projektpartner eine Vielzahl von möglichen Anwendungen. Für die Mikrofluidik lassen sich nicht nur Kanäle im Volumen erzeugen sondern auch Düsen und andere Mikrobauteile.

Große Vorteile bietet das Verfahren auch für Bohr- und Schneidprozesse. Das Ätzen erlaubt dabei einen spannungsfreien Materialabtrag. Das bietet Vorteile zum Beispiel für die Herstellung von Interposer-Strukturen in der Halbleitertechnik. Dabei sind Strukturen unter 10 µm möglich. Neue Systeme mit hoher Laserleistung und Multistrahl-Optiken bieten ein erhebliches Potential, auch dabei einen hohen Durchsatz zu erreichen.

Ansprechpartner

M.Sc. Christian Kalupka
Projektkoordinator »Femto Digital Photonic Production«
Telefon +49 241 8906-276
christian.kalupka@llt.rwth-aachen.de

Dipl.-Phys. Sebastian Nippgen
Gruppenleiter 3D-Volumenstrukturierung
Telefon +49 241 8906-470
sebastian.nippgen@llt.rwth-aachen.de

LLT – Lehrstuhl für Lasertechnik
RWTH Aachen University

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

http://www.llt.rwth-aachen.de
http://www.ilt.fraunhofer.de

Media Contact

Petra Nolis Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine: Neuer Ansatzpunkt für die Krebsforschung

Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von Krebs bei Kindern könnte diese…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…