Mit SMaC gleichzeitig beschichten und fertig bearbeiten

SMaC ermöglicht eine simultane additive Fertigung & mechanische Bearbeitung von Bauteilen. Dadurch ist unter anderem eine werkzeugschonendere und schnellere Herstellung von Korrosions- und Verschleißschutzschichten sowie funktionaler Oberflächen möglich.
© Fraunhofer ILT, Aachen

Schnell und effektiv:

Das Fraunhofer-Institut für Lasertechnik ILT hat das sogenannte SMaC-Verfahren entwickelt, ein neues Beschichtungsverfahren, das Laserauftragschweißen und mechanische Bearbeitung kombiniert. Damit lassen sich hochfeste Beschichtungswerkstoffe schnell und effizient auftragen und simultan zerspanend bearbeiten. SMaC ermöglicht die Herstellung von Bauteilen mit verlängerter Lebensdauer und erweiterten Einsatzzyklen, was gerade in der Energiewirtschaft, der Mobilitätsbranche und der chemischen Industrie höchst interessant ist.

Beschichtungen sind sowas wie Hidden Champions: Sie werden kaum wahrgenommen und leisten dennoch Großartiges. Sie tragen dazu bei, Bauteile vor unterschiedlichsten Arten von Schäden und Verschleiß zu schützen. Beschichtungen verbessern die physikalischen oder chemischen Eigenschaften von Bauteiloberflächen oder verleihen ihnen bestimmte Funktionen. Sie können auch dazu beitragen, Energie zu sparen, indem eine Beschichtung isoliert oder reflektiert.

Insbesondere beim Auftragen schwer zerspanbarer, hochfester Beschichtungen ergeben sich durch die SMaC-Technologie erhebliche wirtschaftliche und technologische Vorteile.
© Fraunhofer ILT, Aachen

Ein neues, patentiertes Kombinationsverfahren, das am Fraunhofer-Institut für Lasertechnik ILT entwickelt wurde, verbessert die Energiebilanz darüber hinaus auf eine weitere Art: das sogenannte Simultane Beschichten und Zerspanen, auf Englisch Simultaneous Machining and Coating, kurz SMaC. »Wir haben die mechanische Bearbeitung mit dem Extremen Hochgeschwindigkeits-Laserauftragschweißen (EHLA) in einem Bearbeitungsschritt kombiniert«, erklärt Viktor Glushych, Leiter der Gruppe Beschichtung LMD und Wärmebehandlung am Fraunhofer ILT. »Damit verkürzen wir die Bearbeitungszeiten erheblich.« Je nach Anforderungsprofil und Beschichtungswerkstoff kann die Prozessdauer um mehr als 60 Prozent reduziert werden.

SMaC löst ein grundlegendes Problem von hochfesten Schutzschichten gegen Korrosion und Verschleiß: Je härter die Beschichtung, desto besser der Schutz aber desto aufwändiger auch die Bearbeitung. Der Clou bei SMaC ist, dass es die im EHLA-Prozess entstehende Prozesswärme nutzt.

Unmittelbar nach dem Laserauftragschweißen besitzen die Beschichtungswerkstoffe bei mehreren Hundert Grad Celsius Restwärme nur einen Bruchteil ihrer Härte. In der mechanischen Bearbeitung, die zeitparallel stattfindet, verschleißt das Werkzeug somit erheblich weniger und arbeitet gleichzeitig schneller.

»Mit SMaC können wir korrosions- und verschleißbeständige Beschichtungen wirtschaftlich aufbringen. Wir erzielen signifikant höhere Oberflächenqualitäten und potenziell höhere Werkzeugstandzeiten als mit der üblichen, sequenziellen Bearbeitung«, verdeutlicht Glushych. Im EHLA-Prozess können hochfeste Beschichtungswerkstoffe verarbeitet werden – sogar Hochentropie-Legierungen oder metallische Gläser, die mit konventionellen Methoden kaum mechanisch bearbeitet werden können.

Großes Anwendungsspektrum für SMaC

SMaC erlaubt eine hochproduktive, wirtschaftliche und vielseitige Beschichtung von Bauteilen. Das neue Verfahren ist aber auch unter ökologischen Gesichtspunkten interessant, weil Komponenten deutlich länger unbeschädigt im Einsatz bleiben können und seltener ausgetauscht werden müssen. »SMaC verlängert entscheidend die Lebensdauer, Einsatzzyklen und Wartungsintervalle von Bauteilen, Baugruppen und ganzen Maschinen«, erläutert Glushych. »Das erhöht die Rohstoff- und Energieeffizienz der Bauteile und minimiert Maschinenstillstände.«

Weniger Ersatzteile bedeuten weniger Rohstoffeinsatz, weniger Wartung, weniger Transport und Lagerhaltung. Für viele Unternehmen bedeutet dies mehr Unabhängigkeit und mehr Planungssicherheit – das heißt eine höhere Resilienz der Produktion. Insbesondere in den letzten Jahren wurden einige Unternehmen schon häufiger durch sehr lange Lieferzeiten für metallische Funktionsbauteile ausgebremst.

»SMaC ist effizient, energie-, zeit- und ressourcenschonend«, beschreibt Glushych die Vorteile. Das Verfahren eignet sich prinzipiell für alle Anwendungen, bei denen bisher Bauteile nacheinander beschichtet und zerspant wurden. Es lässt sich beispielsweise zur Herstellung von Beschichtungen für Korrosions- und Verschleißschutz, Beschichtungen mit hart und weichmagnetischen Eigenschaften oder zur Herstellung von enorm widerstandsfähigen Gleitlagerbeschichtungen und weiteren funktionalen Oberflächen einsetzen.

Anwendungen finden sich beispielsweise in der Energiewirtschaft und der gesamten Mobilitätsbranche, überall, wo hoch belastete, rotationssymmetrische Bauteile zum Einsatz kommen. In der chemischen Industrie beispielsweise müssen Oberflächen aggressiveren Medien standhalten. Im Bergbau oder bei Werkzeugen schützt SMaC erfolgreich gegen Verschleiß. Die Anwendungsbereiche sind zahlreich sowie vielfältig.

Glushych denkt einen Schritt weiter: »Mit dem Simultanen Beschichten und Zerspanen könnten wir beispielsweise bestimmte feinstaubreduzierende Bremsscheibenbeschichtungen schneller und produktiver fertigen«, überlegt er. »Eine andere Anwendung, die wir testen wollen, ist die Herstellung von Multimaterialschichten in der Batterietechnik.« Das neue Kombinationsverfahren wird in der nächsten Zeit viele neue Anwendungsfelder für die laserbasierte Beschichtungstechnologie eröffnen, ist sich der Wissenschaftler sicher.

Ankündigung: Machen Sie sich selbst ein Bild von SMaC

Besuchen Sie uns auf der LASER World of PHOTONICS in München vom 27. bis zum 30. Juni 2023, Stand: A3.441 sowie World of Quantum: A1.521.

Wissenschaftliche Ansprechpartner:

Viktor Glushych M. Sc.
Gruppenleitung Beschichtung LMD und Wärmebehandlung
Telefon +49 241 8906-152
viktor.glushych@ilt.fraunhofer.de

Dr.-Ing. Thomas Schopphoven
Leitung Laserauftragschweißen
Telefon +49 241 8906-8107
thomas.schopphoven@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
www.ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/

Media Contact

Petra Nolis M.A. Marketing & Kommunikation
Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…