Molekulare Dynamik in Echtzeit
Ein europäisches Forschungsteam hat ein neuartiges spektroskopisches Verfahren entwickelt, mit dem sich ultraschnelle dynamische Prozesse von Elektronen und Schwingungen innerhalb von Molekülen verfolgen lassen – und zwar mit atomarer Auflösung und in Echtzeit. Das experimentelle Team in Barcelona wurde bei der theoretischen Beschreibung der Prozesse durch ein Team der Universität Jena unterstützt. Die Forschenden demonstrieren ihre „Attosekunden-Kernspektroskopie“ am Beispiel des Furan-Moleküls und stellen ihre Methode im Fachmagazin „Nature Photonics“ vor.
Chemische Reaktionen sind komplexe Mechanismen. Daran beteiligt sind verschiedene dynamische Prozesse der Elektronen und der Atomkerne, die sich wechselseitig beeinflussen. Sehr oft führt eine stark gekoppelte Elektronen- und Kerndynamik zu ultraschnellen strahlungslosen Relaxationsprozessen, die als konische Überschneidungen bekannt sind. Bislang lassen sich solche Prozesse, die von hoher chemischer und biologischer Relevanz sind, jedoch experimentell nur sehr schwer beobachten. Der Grund: Die Bewegungen der Elektronen und der Atomkerne sind nur schwer voneinander zu unterscheiden und laufen auf ultraschnellen Zeitskalen ab, bis runter in den Attosekundenbereich – dem Milliardstel einer Milliardstel Sekunde.
In einer kürzlich erschienenen Veröffentlichung in Nature Photonics haben das experimentell arbeitende Forschungsteam des Institute of Photonic Sciences (ICFO) in Barcelona sowie das Theorieteam um Dr. Karl Michael Ziems und Prof. Dr. Stefanie Gräfe von der Friedrich-Schiller-Universität Jena nun ein leistungsfähiges Werkzeug vorgestellt, das solche molekularen Dynamiken in Echtzeit erfassen kann. Die Forschenden haben ihre Methode an der Dynamik des Furan-Moleküls in der Gasphase gemessen. Furan ist ein organisches Molekül, das aus Kohlenstoff, Wasserstoff und Sauerstoff besteht, wobei die Atome in einer planaren fünfeckigen Geometrie – als „chemischer Ring“ – angeordnet sind. Furan ist ein prototypisches Beispiel chemischer Ringverbindungen, die in zahlreichen Alltagsprodukten wie Kraftstoffen, Pharmazeutika oder Agrochemikalien vorkommen.
Wie ein chemischer Ring geöffnet wird und wie er sich wieder schließt
Dem Team ist es gelungen, Details einer Ringöffnungsdynamik von Furan zeitlich aufzulösen, d. h. die Spaltung der Bindung zwischen einem Kohlenstoffatom und dem Sauerstoffatom, was die Ringstruktur aufbricht. Dafür wurde das Furan-Molekül zunächst durch einen Laserstrahl (Anregungspuls) angeregt. Mit einem darauffolgenden, schwächeren Attosekunden-Puls (Abfragepuls) konnten die Forschenden die durch die Anregung ausgelösten Veränderungen im Molekül beobachten.
Nach der initialen Lichtanregung konnten die erwarteten Kopplungsregionen zwischen verschiedenen Zuständen (konischen Durchschneidungen) zeitlich lokalisiert werden, indem die Veränderungen des Absorptionsspektrums in Abhängigkeit von der Verzögerung zwischen Anregung und Abfragepuls analysiert wurden. Das Auftreten und Verschwinden von Absorptionsmerkmalen liefern Signaturen für die Änderungen des elektronischen Zustands von Furan.
So konnten die Forscher zum ersten Mal zeigen, dass eine Quantenüberlagerung zwischen verschiedenen elektronischen Zuständen erzeugt wird – ein elektronisches Wellenpaket – die sich in Form von sogenannten Quantenbeats manifestiert. Auch die eigentliche Ringöffnung über sogenannte dunkle Zustände konnte mit dem experimentellen Aufbau demonstriert werden. Der Übergang des Moleküls von einer geschlossenen zu einer offenen Ringgeometrie spiegelt sich in einem veränderten Absorptionsspektrum wider. Schließlich kehrte das Molekül in seinen elektronischen Grundzustand zurück, dessen Übergang ebenfalls genau zeitaufgelöst wurde.
Neues Werkzeug zur Analyse schneller Vorgänge in Molekülen
Das Autorenteam hebt hervor, dass die Attosekunden-Kernspektroskopie nicht nur auf Untersuchungen dieses speziellen Moleküls beschränkt ist, sondern sich als Werkzeug für vielfältige Anwendungen eignet. So könnten damit komplexe Dynamiken analysiert werden, wie sie etwa bei der Wechselwirkung von ultravioletter Strahlung und DNA auftreten. Darüber hinaus sehen die Forschenden die Manipulation von chemischen Reaktionsabläufen als eine der vielversprechendsten Anwendungen für ihre Arbeit.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Stefanie Gräfe
Institut für Physikalische Chemie und Institut für Angewandte Physik der Universität Jena
Lessingstr. 4, 07743 Jena, Germany
Tel.: +49-3641-948 330
E-Mail: s.graefe@uni-jena.de
Originalpublikation:
Attosecond core-level absorption spectroscopy reveals the electronic and nuclear dynamics of molecular ring opening, S. Severino, K. M. Ziems, M. Reduzzi, A. Summers, H.-W. Sun, Y.-H. Chien, S. Gräfe & J. Biegert, 2024, Nature Photonics, https://www.nature.com/articles/s41566-024-01436-9
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…