Nanoröhren in Streifen gelegt
Einige technische Neuerungen der jüngsten Zeit beruhen auf dem Einsatz von dünnen Schichten aus Kohlenstoff-Nanoröhren. So haben Wissenschaftler der Universität Stanford (USA) 2013 den Prototypen eines Computers vorgestellt, dessen elektronische Komponenten nicht auf Silizium basieren, sondern auf Kohlenstoff-Nanoröhren. Auch in den Displays von Smartphones kommen Nanoröhren teilweise schon zum Einsatz – als kostengünstigere Alternative zu den bislang üblichen Indium-Zinn-Oxiden.
Dünne Schichten aus Kohlenstoff-Nanoröhren lassen sich mit verschiedenen Methoden erzeugen. „Dabei ist es sehr wichtig, die Herstellung der Schichten genau steuern zu können, um die gewünschten Strukturen und Eigenschaften zu erreichen“, sagt Professor Tobias Hertel von der Universität Würzburg. Seine Arbeitsgruppe am Institut für Physikalische und Theoretische Chemie hat dazu jetzt neue Erkenntnisse gewonnen. Veröffentlicht sind sie in der Zeitschrift „Nano“ der American Chemical Society (ACS).
Horizontale Abscheidung von Nanoröhren
Das Team um Tobias Hertel hat sich mit der Technik der horizontalen Abscheidung befasst. Dabei setzen sich die Nanoröhren aus einer verdampfenden Flüssigkeit heraus auf einer Oberfläche ab. „Dieses Verfahren nutzt Selbstorganisationsphänomene der Nanoröhren“, erklärt der Professor, „es ermöglicht zum Beispiel die Herstellung dünnster Schichten, in denen alle Nanoröhren mit der gleichen Ausrichtung angeordnet sind.“
Mit dieser Technik können auch Schichten erzeugt werden, in denen sich die Nanoröhren zu regelmäßigen Streifenmustern mit Dimensionen im Mikrometerbereich arrangieren. „Dieser Effekt ähnelt sehr der Bildung von Kaffeeablagerungen und wird daher gelegentlich auch als Kaffee-Fleck-Phänomen bezeichnet“, so Hertel.
Die so entstehenden Schichten eignen sich hervorragend zur Herstellung nanorohrbasierter Transistoren. Bislang allerdings sei unklar gewesen, wie sich die regelmäßigen Streifen bilden und wie sich dieser Prozess kontrollieren lässt. Dank der Forschung der Würzburger Wissenschaftler hat sich das nun geändert.
Gleichmäßige Bewegung ergibt Streifenmuster
Bisher gingen die Forscher davon aus, dass die verdampfende Flüssigkeit sich ruckartig über die zu beschichtende Oberfläche bewegt und dass an ihrem Rand bei jedem Ruck ein Streifen aus Nanoröhren zurückbleibt – „ähnlich wie auch ein stotternder Autoreifen auf dem Asphalt ein Auto ruckelnd zum Stillstand bringt“, vergleicht Hertel.
Sein Team hat nun aber gezeigt, dass der Flüssigkeitsrand bei seiner Bewegung über die Oberfläche nicht ruckartig, sondern gleichmäßig langsamer wird und dann wieder an Fahrt aufnimmt. Weil das periodisch geschieht, ergeben sich daraus regelmäßige Streifenmuster.
Glasplatten beschleunigen den Prozess
Die Forscher haben außerdem herausgefunden, wie sich dieser Prozess deutlich beschleunigen lässt: „Wenn wir die Flüssigkeit, aus der die Schichten abgeschieden werden, zwischen zwei Glasplatten geben, die nur um Haaresbreite voneinander entfernt sind, entstehen die Streifenmuster bis zu hundert Mal schneller.“ Verantwortlich dafür sei die an der Grenze zwischen Flüssigkeit und Unterlage theoretisch beliebig schnelle Verdunstung – ein Effekt, der erst auf der Mikrometerskala spürbar wird.
Bei Youtube hat Professor Hertel ein Video hinterlegt: Darin ist in Zeitlupe zu sehen, wie bei der Technik der horizontalen Abscheidung Schritt für Schritt ein Streifenmuster aus Kohlenstoff-Nanoröhren entsteht: http://www.youtube.com/watch?v=KBHswRKdQXQ
Wie die Forschung weitergeht
Die nächsten Experimente zielen laut Professor Hertel darauf ab, die Schichtbildung besser zu kontrollieren und weiter zu beschleunigen. „Damit dieser Prozess wirklich einmal eine Anwendung finden kann, liegt noch ein ganzes Stück Arbeit vor uns. Insbesondere müssen wir die Grenzen des Machbaren ausdehnen im Hinblick auf die Geschwindigkeit, mit der diese Schichten entstehen.“
Kontakt
Prof. Dr. Tobias Hertel, Institut für Physikalische und Theoretische Chemie, Universität Würzburg, T (0931) 31-86300, tobias.hertel@uni-wuerzburg.de
„Dynamical Contact-Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation“,Han Li, Tilman C. Hain, Andreas Muzha, Friedrich Schöppler, Tobias Hertel. ACS Nano, online veröffentlicht am 14. Mai 2014, DOI: 10.1021/nn501957y
Media Contact
Weitere Informationen:
http://www.uni-wuerzburg.deAlle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…