Neues Messverfahren ermöglicht präzisere Untersuchung ultraschneller Prozesse in Materie
- Freiburger Physiker entwickeln neues Spektroskopie-Verfahren
- Neue Einblicke in die Korrelation zwischen den optischen Eigenschaften und der elektronischen Struktur von Materie
- Das Verfahren eröffnet eine Vielzahl neuer Entwicklungen in der Untersuchung ultraschneller Prozesse in Materie
Einem Freiburger Forscherteam um Prof. Dr. Frank Stienkemeier und Dr. Lukas Bruder ist es gelungen, ein neues Messverfahren zur Untersuchung ultraschneller Prozesse in Materie zu entwickeln. Hierbei handelt es sich um Abläufe auf atomarer und molekularer Ebene, die innerhalb einer Milliardstel Sekunde (10-12 sec) ablaufen.
Das neue Verfahren, das unterschiedliche Spektroskopie-Verfahren kombiniert, ermöglicht unter anderem neue Einblicke in die Energiestruktur in Materie und die Wahrscheinlichkeitsverteilung von Elektronen. Fundamentale molekulare Prozesse können nun laut der Forscher genauer verstanden werden. Die Ergebnisse der Forschung werden in dem Fachmagazin „Optica“ veröffentlicht und sollen vor allem weitere Entwicklungen beflügeln.
Untersuchung grundlegender Eigenschaften von Materie
Das Freiburger Team arbeitet seit mehreren Jahren an der Weiterentwicklung der ultraschnellen, kohärenten, mehrdimensionalen Spektroskopie. Vereinfacht gesagt wird bei der Spektroskopie die Absorption von Licht untersucht, um wichtige Eigenschaften von Materie zu untersuchen. Hierzu gehören besagte ultraschnelle Prozesse sowie kohärente Quantenphänomene und Wechselwirkungen zwischen Atomen und anderen nanoskopischen Teilchen. „Dies sind die grundlegenden Eigenschaften von Materie, die die Vorgänge in der Natur auf nanoskopischer Ebene treiben und diese Eigenschaften wollen wir durch unsere Experimente besser verstehen“, berichtet Stienkemeier.
Ein generelles Problem in der kohärenten, mehrdimensionalen Spektroskopie ist die Komplexität der Messdaten, welche eine klare Interpretation der experimentellen Ergebnisse oft erschwert bis unmöglich macht. Die Situation verbessert sich deutlich, wenn das Experiment mit der Nutzung beispielsweise eines Massenspektrometers kombiniert wird. „Dieses Vorgehen gibt uns die zusätzliche und sehr nützliche Information über die chemische Zusammensetzung des untersuchten Stoffes – ein großer Vorteil bei der Studie ultraschneller chemischer Reaktionen“, erläutert Bruder.
Vielzahl an Möglichkeiten
Vergleichbar dazu ist es den Freiburger Forschern nun gelungen, die kohärente, mehrdimensionale Spektroskopie mit der Photoelektronen- spektroskopie zu kombinieren. In diesem Verfahren wird der Stoff ionisiert und die Energie ausgelöster Elektronen gemessen. Dieses Vorgehen liefert Informationen über die Energiestruktur und die räumliche Wahrscheinlichkeitsverteilung der Elektronen (Orbitale) in der Materie. Kombiniert man die Photoelektronenspektroskopie mit Röntgenlichtquellen sind präzise Messungen mit atomarer Selektion möglich – das heißt, dass die Energieverteilung in einem Stoff mit extrem hoher bis hin zu atomarer Auflösung untersucht werden kann.
„Unser Ansatz eröffnet eine Vielzahl aufregender, neuer Entwicklungen“, erklärt Stienkemeier. „Das reicht von der Erweiterung unserer Methode zur simultanen energie- und winkelaufgelösten Elektronenmessung, bis hin zu Experimenten mit Röntgenstrahlung, um atomspezifische Informationen zu erhalten.“ Als weiterer Vorteil des Freiburger Ansatzes konnte die Sensitivität der kohärenten, mehrdimensionalen Spektroskopieexperimente um Größenordnungen verbessert werden. Das heißt, dass Signale, die zuvor einen Faktor von 200 kleiner als das Rauschen in der Messung waren, können nun nachgewiesen werden. „Die erhöhte Sensitivität ermöglicht es uns, sehr saubere Proben in Ultrahochvakuumexperimenten zu untersuchen und so fundamentale molekulare Prozesse genauer zu verstehen“, ergänzt Bruder.
Das Forschungsprojekt wurde im Rahmen der internationalen Graduiertenschule „CoCo“, die von der Deutschen Forschungsgemeinschaft eingerichtet wurde, sowie über dem Projekt „COCONIS“ vom Europäischen Forschungsrat (ERC) gefördert.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Frank Stienkemeier
Physikalisches Institut
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7609
E-Mail: stienkemeier@uni-freiburg.de
Originalpublikation:
Daniel Uhl, Ulrich Bangert, Lukas Bruder, and Frank Stienkemeier, „Coherent optical 2D photoelectron spectroscopy,“ Optica 8, 1316-1324 (2021)
Weitere Informationen:
https://www.pr.uni-freiburg.de/pm/2021/neues-messverfahren-ermoeglicht-praeziser..
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…