Neues Messverfahren sorgt für besseres Verständnis der Katalyse
Gemeinsam mit ihren Kooperationspartnern haben sie ihre Forschungsergebnisse vor kurzem in der Onlineausgabe der renommierten Zeitschrift „Angewandte Chemie“ veröffentlicht.
„Bisherige Verfahren zur Bestimmung des Nutzungsgrades solcher Prozesse beruhten immer auf Beobachtungen außerhalb des Bereichs, in dem die chemischen Umwandlungen stattfinden“, berichtet Kärger. Zusätzliche Arbeiten, die dadurch nötig waren, könnten mit dem neuen Messverfahren entfallen. „Mit dem von uns eingeführten Verfahren sind die besten Voraussetzungen gegeben, um die bisher gebräuchlichen, konventionellen Messmethoden abzulösen“, sagt der Physiker.
Mikroporöse Katalysatoren, also Materialien mit Poren von molekularer Größe, haben bei den chemischen Prozessen eine doppelte Funktion. Sie beschleunigen einerseits die Umwandlung und sorgen durch ihre passgenaue Porengröße andererseits dafür, dass nur bestimmte Moleküle entstehen können. Allein im Bereich der Erdölveredlung liegen die auf diesem Prinzip basierenden Einsparungen weltweit im Bereich von jährlich zehn Milliarden Euro.
Das Verhältnis zwischen tatsächlicher und maximal möglicher Umsatzgeschwindigkeit ist eine entscheidende Kenngröße für die Effizienz katalytischer Reaktionen, wobei die Menge des gebildeten Produkts einer katalytischen Umwandlung offensichtlich mit dem Anteil des Porenraums anwächst, der für diese Umwandlung genutzt wird.
Mit der Verteilung der Ausgangs- und Produktmoleküle im Katalysator, wie sie mit dem neuen Verfahren direkt beobachtbar wird, sind damit alle für die Bestimmung des Nutzungsgrades beim jeweiligen Katalysatoreinsatz erforderlichen Informationen unmittelbar verfügbar.
Die Entwicklung und erfolgreiche Erprobung des neuen Messprinzips sind Kärger zufolge auch den Rahmenbedingungen im Internationalen Graduiertenkolleg „Diffusion in Porous Materials“ an der Universität Leipzig zu verdanken, in dem die Untersuchungen durchgeführt wurden. Unterstützt wurden die Forscher dabei vor allem vom Sprecher des Graduiertenkollegs, Prof. Dr. Roger Gläser.
Originaltitel der Veröffentlichung: „Microimaging of Transient Concentration Profiles of Reactant and Product Molecules during Catalytic Conversion in Nanoporous Materials“ in „Angewandte Chemie – International Edition“,
DOI: 10.1002/ange.201409482
Weitere Informationen:
Prof. Dr. Jörg Kärger
Universität Leipzig
Telefon: +49 341 97-32502
E-Mail: kaerger@physik.uni-leipzig.de
Dr. Christian Chmelik
Universität Leipzig
Telefon: +49 341 97-32531
E-Mail: chmelik@physik.uni-leipzig.de
Prof. Dr. Jens Weitkamp
Universität Stuttgart
Telefon: +49 711 685 64060
E-Mail: jens.weitkamp@itc.uni-stuttgart.de
http://onlinelibrary.wiley.com/doi/10.1002/anie.201409482/abstract
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…