Neues Verfahren ermöglicht Steuerung von elektronischen Materialeigenschaften

Diese Entdeckung könnte für zukünftige Anwendungen in der Sensorik und der Computertechnologie von grosser Bedeutung sein. Die Arbeiten des internationalen Forscherteams der Universitäten Basel und Heidelberg sowie des Paul Scherrer Instituts werden im renommierten Wissenschaftsmagazin “Science” veröffentlicht.

Gewöhnlich ist der elektrische Widerstand eines Materials ebenso wie sein spezifisches Gewicht und seine Farbe eine nicht steuerbare Materialeigenschaft. Forschenden um die Physikerin Dr. Meike Stöhr ist es nun gelungen, ein Verfahren zu entwickeln, mit dem zukünftig die elektronischen Eigenschaften an einer Oberfläche gezielt verändert werden können, darunter auch der Widerstand.

Das interdisziplinäre Team aus Physikern und Chemikern hat eine Substanz entwickelt, die durch Erhitzen auf einer Kupferoberfläche ein stabiles zweidimensionales Netzwerk mit Nanometer-kleinen Poren bildet. Durch die Wechselwirkung dieses Netzwerks mit dem an der Metalloberfläche vorhandenen Elektronengas kommt es zu zwei Effekten: Unterhalb des Netzwerks werden die Elektronen verdrängt, während sich in den Poren kleine “Elektronenseen” in sogenannten Quantentöpfen bilden.

Grosses Potenzial für die Materialforschung
Durch Veränderung sowohl des Porenabstands als auch des Porendurchmessers besteht die Möglichkeit, die Eigenschaften des Materials gezielt zu verändern. Eine weitere Möglichkeit zur Veränderung bietet sich durch das Befüllen der Poren mit Gast-Molekülen an. Dadurch würde ein direkter Zugriff auf die Eigenschaften ermöglicht, welche von den Elektronen bestimmt werden, wie z.B. die Leitfähigkeit, die Reflektivität oder die katalytischen Eigenschaften der Oberfläche. Auf diese Weise können Materialien mit neuen steuerbaren Eigenschaften entstehen.

Die zugrunde liegenden physikalischen Vorgänge können durch den Vergleich des Elektronengases mit Wasserwellen an folgendem Beispiel nachvollzogen werden: An einem auf der Oberfläche schwimmenden Hindernis werden Wasserwellen reflektiert. Für ein Hindernis in Form eines Bienenwaben-förmigen Netzes können sich in den einzelnen Waben stehende Wasserwellen ausbilden. So entsteht je nach Struktur und Grösse des Netzes ein charakteristisches Wellenmuster. Analog hierzu entstehen im oben beschriebenen neuen Material charakteristische Elektronenwellen aufgrund der Wechselwirkung des molekularen Netzwerks mit den Elektronen der Metalloberfläche.

Poren-Netzwerke sind Kandidaten für neue Metamaterialien. Dies sind Stoffe, die aufgrund ihrer speziellen periodischen Struktur optische bzw. elektronische Eigenschaften haben, die durch die Steuerung der Eigenschaften der einzelnen Komponenten gezielt verändert werden können. Im vorliegenden Fall sind es die elektronischen Eigenschaften der Oberfläche, welche durch die Grösse und die Eigenschaften der selbstorganisierten Nano-Poren bestimmt werden.

Die Universität Basel und das Paul Scherrer Institut sind Teil des langfristig angelegten und vom Kanton Aargau finanzierten Swiss Nanoscience Institute (SNI). Zum SNI gehören das 2001 gegründete Netzwerk des Nationalen Forschungsschwerpunkts Nanowissenschaften sowie das 2006 neu geschaffene, vom Kanton Aargau finanzierte Argovia-Netzwerk. Wichtiger Partner im vorliegenden Projekt war die Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts.

Weitere Auskünfte
Dr. Meike Stöhr, Swiss Nanoscience Institute, Tel. ++41 (0) 61 267 37 59,
E-Mail: Meike.Stoehr@unibas.ch
Dr. Thomas Jung, Paul Scherrer Institut, Tel. ++41 (0) 56 310 45 18,
Handy: 079 534 14 49, E-Mail: Thomas.Jung@psi.ch
Hans Syfrig, Leiter Öffentlichkeitsarbeit, Universität Basel,
Tel. ++ 41 (0) 61 267 30 16, E-Mail: Hans.Syfrig@unibas.ch
Verwandte Seiten
Swiss Nanoscience Institute an der Universität Basel >
http://www.nccr-nano.org/nccr/
Nanolab an der Universität Basel >
http://monet.physik.unibas.ch/gue/nanolab/
Anorganische Chemie der Universität Heidelberg >
http://www.gade.uni-hd.de/
Molekulare Nanowissenschaften am PSI >
http://lmn.web.psi.ch/molnano/
Originalbeitrag
Jorge Lobo-Checa, Manfred Matena, Kathrin Müller, Jan Hugo Dil, Fabian Meier, Lutz H. Gade, Thomas A. Jung, and Meike Stöhr.
Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface

Science 16 July 2009 [DOI: 10.1126/science.1175141]

Media Contact

Hans Syfrig idw

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Vom Molekül bis zur Krankheit

PIPs-Projekt der Leibniz-Kooperative Exzellenz gestartet. Welche Rolle spielen bestimmte Lipide, sogenannte Phosphoinositide (PIPs), bei Adipositas und anderen Stoffwechselerkrankungen? Das erforschen jetzt Forschende vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin,…

Wie die Evolution unsere Herzen prägte

Wie genau sich die Herzen von Menschen und nichtmenschlichen-Primaten genetisch unterscheiden, hat ein Team um Norbert Hübner und Sebastian Diecke am Max Delbrück Center gezeigt. Die Studie in „Nature Cardiovascular…

Solarzellen für das Internet der Dinge

Kunden und Startkapital für Empa-Spin-off… «Perovskia Solar» hat mehr als zehn führende Unternehmen aus der «Internet of Things» (IoT)-Branche als Kunden gewonnen und über zwei Millionen Franken Startkapital erhalten. Das…

Partner & Förderer