Programmierbare Strukturen aus dem Drucker

With their new process, the research team has produced its first prototype, a forearm brace which adapts to the wearer and can be developed for medical applications.
Tiffany Cheng / ICD Universität Stuttgart

Forschende der Universität Freiburg und der Universität Stuttgart haben ein neues Verfahren entwickelt, um bewegliche, sich selbst-anpassende Materialsysteme im handelsüblichen 3-D-Drucker herzustellen. Die Systeme können unter dem Einfluss von Feuchtigkeit komplexe Formveränderungen durchlaufen, sich auf vorprogrammierte Weise zusammenziehen und ausdehnen. Bei der Entwicklung haben sich die Wissenschaftlerinnen und Wissenschaftler an den Bewegungsmechanismen einer windenden Kletterpflanze orientiert, der so genannten Luftkartoffel (Dioscorea bulbifera).

Mithilfe der Methode hat das Team als ersten Prototyp eine Unterarmschiene produziert, die sich an die Trägerin oder den Träger anpasst und die für medizinische Anwendungen weiterentwickelt werden kann. Das Verfahren ist in einer Zusammenarbeit von Tiffany Cheng und Prof. Dr. Achim Menges vom Institut für computerbasiertes Entwerfen (ICD) und dem Exzellenzcluster Integratives und computerbasiertes Planen und Bauen für die Architektur (IntCDC) der Universität Stuttgart sowie Prof. Dr. Thomas Speck von der Plant Biomechanics Group und dem Exzellenzcluster Living, Adaptive and Energy-autonomous Materials Systems (livMatS) der Universität Freiburg entstanden. Ihre Ergebnisse präsentieren die Forschenden in der Fachzeitschrift Advanced Science.

4-D-Druck gibt Formänderungen vor

Der 3-D-Druck hat sich als Fertigungsverfahren für eine Vielzahl von Anwendungen etabliert. Mit ihm lassen sich auch intelligente Materialien und Materialsysteme erzeugen, die nach dem Druck noch beweglich sind und mittels eines äußeren Stimulus wie Licht, Temperatur oder Feuchtigkeit selbstständig ihre Form verändern. Dieser so genannte 4-D-Druck, mit dem sich eine durch einen Reiz ausgelöste Formänderung vorgeben lässt, erweitert das Anwendungspotenzial der Systeme immens. Möglich sind solche Formveränderungen durch die chemische Zusammensetzung der Materialien, die aus Stimuli-responsiven Polymeren bestehen. Allerdings sind die Drucker und Ausgangsstoffe, mit denen solche Materialien bisher produziert werden, meist hochspezialisierte und teure Sonderanfertigungen.

Mit handelsüblichen 3-D-Druckern lassen sich Materialien herstellen, die auf Änderungen der Luftfeuchtigkeit reagieren. Sie bestehen aus einer quellenden und einer stabilisierenden Schicht. Aufgrund ihres Aufbaus können diese Materialysteme sowohl Formveränderungen des Gesamtsystems als auch einzelner Teile durchlaufen. Die Forschenden der Universitäten Freiburg und Stuttgart kombinierten zwei reaktive Materialsysteme und konnte so einen komplexen Bewegungsmechanismus realisieren: Eine gewundene Struktur, die sich durch das Aufklappen von Drucktaschen fester zieht und die sich von selbst wieder lösen kann, wenn die Drucktaschen einklappen und die gewundene Struktur in einen offenen Zustand zurückkehrt.

Natürliche Bewegungsmechanismen auf Materialsystem übertragen

Für das neue Verfahren haben sich die Wissenschaftler einen Mechanismus aus der Natur zunutze gemacht: Die Luftkartoffel klettert an Bäumen hinauf, indem sie selbst Druckkraft gegen den Stamm der Wirtpflanze aufbringt. Hierfür windet sich die Pflanze zunächst lose um einen Baumstamm, um dann Nebenblätter, so genannte Stipulae, auszutreiben, die den Abstand zwischen der Kletterpflanze und dem Stamm der Wirtspflanze vergrößern. Dabei wird der windende Stamm der Luftkartoffel unter Spannung gesetzt. Um diese Mechanismen nachzuahmen, haben die Forschenden das Materialsystem modular aufgebaut: Seine Schichten sind so strukturiert, dass es sich in verschiedene Richtungen und in unterschiedlichen Graden biegen kann und sich so schraubig windet und eine Helix-Struktur bildet. Taschen auf der Oberfläche sorgen dafür, dass die Helix nach außen gedrückt wird und unter Spannung gerät, woraufhin sich das gesamte Materialsystem zusammenzieht.

„Bisher ist unser Verfahren noch begrenzt auf vorhandene Ausgangsmaterialien, die auf Feuchtigkeit reagieren“, sagt Achim Menges. „Wir hoffen“, ergänzt Thomas Speck, „dass künftig auch preiswerte Materialien für den 3-D-Druck verfügbar sein werden, die auf andere Stimuli reagieren und die für unser Verfahren ebenfalls zum Einsatz kommen können.“

Exzellenzcluster Living, Adaptive and Energy-autonomous Material Systems (livMatS)

Forscherinnen und Forscher entwickeln im Exzellenzcluster Living, Adaptive and Energy-autonomous Materials Systems (livMatS) der Universität Freiburg lebensähnliche Materialsysteme, die von der Natur inspiriert sind. Ähnlich wie lebende Strukturen werden sie sich autonom an unterschiedliche Umwelteinflüsse anpassen, saubere Energie aus ihrer Umgebung ernten und unempfindlich gegen Beschädigungen sein oder diese selbstständig heilen. Dennoch werden diese Materialsysteme rein technische Objekte sein, sodass sie sich mit synthetischen Methoden herstellen und unter extremen Bedingungen einsetzen lassen. Thomas Speck ist Mitglied des Sprecherteams des Exzellenzclusters.

Exzellenzcluster livMatS der Universität Freiburg:
https://livmats.uni-freiburg.de

Exzellenzcluster IntCDC der Universität Stuttgart:
https://www.intcdc.uni-stuttgart.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Speck
Exzellenzcluster livMatS / Institut für Biologie II
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2875
E-Mail: thomas.speck@biologie.uni-freiburg.de

Originalpublikation:

Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A. & Speck, T. (2021). Bio-inspired Motion Mechanisms: Computational Design and 4D-printing of Self-adjusting Wearable Systems. In: Advanced Science, 8(13): 2100411. DOI: 10.1002/advs.202100411

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2021/programmierbare-strukturen-aus-dem-drucke…

Media Contact

Rimma Gerenstein Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…