Ressourcen- und kostengünstige Verschleißschutzschichten…
…dank neuem hybriden Beschichtungsverfahren.
Ein Forscherteam des Fraunhofer-Instituts für Produktionstechnologie IPT in Aachen hat ein hybrides additives Fertigungsverfahren entwickelt, das draht- und pulverbasiertes Laserauftragschweißen (LMD) verbindet. Mit dem neuen Verfahren können Schutzschichten aus hochfestem Werkzeugstahl auf Werkstücke aufgebracht und Oberflächendefekte kostengünstig repariert werden. Die so erzeugten Werkzeugbeschichtungen sind verschleißbeständiger, ressourcen- und kosteneffizienter als solche, die mit anderen Methoden hergestellt werden. Nach erfolgreichen Testreihen mit Werkzeugbauteilen ist ein Einsatz des Verfahrens zur Bearbeitung von Hydraulikkomponenten geplant.
Additive Fertigungsverfahren wie das Laserauftragschweißen (LMD) werden eingesetzt, um Bauteile zu fertigen oder lokal zu optimieren. Beim LMD wird ein Laserstrahl auf die Bauteiloberfläche fokussiert; gleichzeitig wird ein Zusatzwerkstoff – üblicherweise als Pulver oder Draht – zugeführt und aufgeschmolzen. Das LMD eignet sich gut, um Schutzschichten auf die stark beanspruchten Bauteile aufzubringen, Schadstellen zu reparieren und die Geometrie von Werkstücken auch kurzfristig zu verändern.
Kombination aus Draht und Pulver ist flexibel und kostengünstig
Ein Wissenschaftlerteam des Fraunhofer IPT hat gemeinsam mit seinen internationalen Projektpartnern in dem kürzlich abgeschlossenen Forschungsprojekt »MatLaMeD« eine hybride Variante des Laserauftragschweißens entwickelt, bei der zeitgleich Draht und Pulver verarbeitet werden. Durch die Hinzugabe von Hartstoffpartikeln in Pulverform zu dem Drahtwerkstoff gelang es dem Team erstmals, wichtige Materialeigenschaften wie Härte und Zähigkeit der aufgetragenen Schichten gezielt einzustellen. Zudem ist das Verfahren deutlich kostengünstiger als ein reiner Pulverprozess und bietet eine größere Materialflexibilität als ein reiner Drahtprozess.
Individuelle Werkstoff-Kombinationen für unterschiedliche Anforderungen
Um die besten Material-Kombinationen für verschiedene Anwendungen zu identifizieren, testeten die Wissenschaftlerinnen und Wissenschaftler zahlreiche Werkstoffe. Als Drahtmaterialien für die praktischen Versuchsreihen wählten sie schließlich einen Warmarbeitsstahl mit guter Gefügestabilität sowie einen niedrig legierten Stahl, der sich gut schweißen lässt. Als Pulverwerkstoffe setzten sie in den Testreihen Chrom (Cr) als Karbidbildungs- und Kornfeinungselement sowie Titancarbid (TiC) als Hartphase ein.
Härtesteigerungen von bis zu 30 Prozent
Durch die Kombination von Draht und Pulver konnten die Forschenden die Werkstoffzusammensetzung für jede Anwendung flexibel anpassen. Die Zugabe des Pulverwerkstoffs erlaubte es, die Mikrostruktur der Werkzeugstähle gezielt zu verändern und die Härte der aufgebrachten Schichten zu steigern: Schon die Zugabe kleiner Mengen Titancarbid führte zu Härtesteigerungen bis zu 30 Prozent. »Mit dem neuen Verfahren können wir nun auf unterschiedliche thermische, chemische und mechanische Belastungen rasch und flexibel reagieren, da wir Zähigkeit und Härte punktgenau einstellen können«, sagt Projektleiter Marius Gipperich. Das neue Verfahren, so der Aachener Wissenschaftler, sei ein perfektes Instrument, um den Oberflächenverschleiß zu minimieren und die Lebensdauer von Bauteilen deutlich zu verlängern.
Testreihen zur Bearbeitung von Hydraulikkomponenten geplant
Die positiven Ergebnisse des »MatLaMeD«-Projekts bieten den Forschenden eine Basis, um die neue Methode zur Entwicklung weiterer Materialsysteme mit speziellen Eigenschaften weiterzuentwickeln. Darüber hinaus planen sie den Einsatz des hybriden LMD-Prozesses in verschiedenen Anwendungsgebieten, etwa zur Bearbeitung von Umformwerkzeugen oder zur Behandlung von Reibverschleißschichten von Hydraulikkomponenten.
Derzeit testen die Forscherinnen und Forscher die Möglichkeiten für den Einsatz des hybriden LMD-Prozesses bei der Herstellung gradierter Schichtsysteme. Dafür möchten sie den Titancarbid-Gehalt des Werkstoffgemischs so weit wie möglich steigern. Da Titancarbid hohe Eigenspannungen verursachen kann, die die Rissanfälligkeit beim Schweißen erhöhen können, möchte das Aachener Forschungsteam den TiC-Gehalt Schicht für Schicht individuell anpassen.
Das Projekt »MatLaMeD – Entwicklung neuer Verfahren zum hybriden Laserauftragschweißen« wurde im Rahmen der Förderinitiative »Innovationen für die Produktion, Dienstleistung und Arbeit von morgen« des Bundesministeriums für Bildung und Forschung (BMBF) gefördert.
Wissenschaftliche Ansprechpartner:
Marius Gipperich M.Sc.
Gruppe Lasermaterialbearbeitung
Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstr. 17
52074 Aachen
Telefon +49 241 8904-415
marius.gipperich@ipt.fraunhofer.de
www.ipt.fraunhofer.de
Weitere Informationen:
https://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/210708-ressourcen-und…
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Zeit zum Auszug? Enthüllte Einblicke in die Brutpflege von Buntbarschen
Muschelbewohnende Buntbarsche kümmern sich intensiv um ihre Nachkommen, die sie in verlassenen Schneckenhäusern aufziehen. Ein Team des Max-Planck-Instituts für Biologische Intelligenz verwendete 3D-gedruckte Schneckenhäuser, um herauszufinden, was im Inneren passiert….
Intelligente Textilien: Innovative bequeme Wearable-Technologie
Forscher haben neue Wearable-Technologien demonstriert, die sowohl Strom aus menschlicher Bewegung erzeugen als auch den Komfort der Technologie für die Träger verbessern. Die Arbeit basiert auf einem fortgeschrittenen Verständnis von…
Stabilität bewahren – Studie zeigt, dass Golfstrom im Nordatlantik robust bleibt
Eine Studie der Universität Bern und der Woods Hole Oceanographic Institution in den USA kommt zu dem Schluss, dass die ozeanische Zirkulation im Nordatlantik, zu der auch der Golfstrom gehört,…