Startschuss für EU-Projekt: Charakterisierung der Schweißraupe für adaptives Laserauftragschweißen
Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelt daher im EU-Forschungsprojekt »TopCladd« gemeinsam mit sechs Partnern ein in den Schweißkopf integrierbares, hochpräzises optisches Messsystem. Das neue System soll produzierende Unternehmen in die Lage versetzen, den Prozess des drahtbasierten Laserauftragschweißens zu überwachen und ihn adaptiv zu steuern.
Am 1. September startete das Fraunhofer IPT gemeinsam mit internationalen Partnern sein neues Projekt »TopCladd – Adaptive Laser Cladding for Precise Metal Coating Based on Inline Topography Characterization«. Ziel des Projekts ist es, eine maschinenintegrierte Prozessüberwachung mit einer adaptiven Steuereinheit für die Qualitätsprüfung zu entwickeln.
Die Forscher nutzen im Projekt kurzkohärente Interferometrie, um ein hochpräzises optisches Messsystem zu realisieren, mit dem sich die Topografie der Schweißraupe untersuchen lässt. Um das Messsystem in den Prozess des Laserauftragschweißens zu integrieren, wird ein neuer Schweißkopf entworfen und das bestehende Drahtvorschubsystem angepasst.
Die anfallenden Prozessdaten sollen anschließend analysiert und für die Simulation genutzt werden, um so die Steuereinheit zu optimieren und adaptiv auszulegen. Um das neue System ausgiebig testen zu können, wird im Projekt ein Demonstrator gefertigt.
Ressourcenschonender Prozess LMD-W soll an Stabilität gewinnen
Ursprünglich für den Verschleißschutz konzipiert, wird beim drahtbasierten Laserauftragsschweißen (LMD-W) Draht mit dem Laser aufgeschmolzen und schichtweise gezielt auf der Bauteiloberfläche aufgebracht. Durch das Verfahren lassen sich Schichten auftragen, die das Produkt vor Verschleiß schützen und gleichzeitig die Qualität seiner Oberflächen verbessern. Oft können durch die Technologie auch stark beanspruchte Teile repariert werden, so dass sich ihre ursprünglichen Funktionalitäten wiederherstellen lassen.
Das Laserauftragschweißen mit Draht hat gegenüber dem pulverbasierten Verfahren gleich mehrere Vorteile: Der Zusatzwerkstoff kann drahtförmig effizienter verarbeitet werden. Das spart Ressourcen und Energie und somit Kosten. Außerdem ist das Verfahren präziser, was teure und zeitintensive Nachbearbeitungen reduziert.
Allerdings sind beim drahtbasierten Laserauftragschweißen der Beschichtungskopf, in dem sich das Drahtvorschubsystem und der Laser befinden, und der Werkstoff mechanisch miteinander verbunden. Diese Verbindung beeinflusst den Laserprozess und führt dazu, dass die produzierten Bauteile oft nicht innerhalb der vorgesehenen Toleranzen liegen. Um die Prozessstabilität zu erhöhen, wird dann meist der Laserspot vergrößert, wodurch die Wärmeeinflusszone größer und damit mehr Material beeinflusst wird als nötig.
Die Forscher versprechen sich durch das Projekt, den Prozess des drahtbasierten Laserauftragschweißens durch die Automatisierung unabhängig vom Bediener und vom im Draht verwendeten Zusatzwerkstoff zu stabilisieren.
Projektkonsortium
– Deltatec S.A., Ans (Belgien)
– Dinse G.m.b.H., Hamburg (Deutschland)
– Fraunhofer-Institut für Produktionstechnologie IPT, Aachen (Deutschland)
– Geon X S.A., Gosselies (Belgien)
– Laserco S.A., Charleroi (Belgien)
– Precitec GmbH & Co. KG, Gaggenau (Deutschland)
– Quada V+F Laserschweißdraht GmbH, Schwerte (Deutschland)
Das EU-Projekt »TopCladd – Adaptive laser cladding for precise metal coating based on inline topography characterization« läuft von September 2017 bis August 2019 und wird in dieser Zeit vom Fraunhofer IPT koordiniert. Das Projekt wird vom Bundesministerium für Bildung und Forschung im Rahmen des Förderprogramms »M-ERA.Net – flexible und bedarfsgerechte transnationale Förderung im Bereich der Materialforschung« mit 1,4 Millionen Euro gefördert.
Ansprechpartner
Christoph Riedel M.Sc.
Telefon +49 241 8904-166
christoph.riedel@ipt.fraunhofer.de
Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
www.ipt.fraunhofer.de
http://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20171114_startschuss-f…
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…