Hansdampf im Katalyselabor: LIKAT-Chemiker vereinfachen die Amin-Synthese
Das Spektrum beginnt bei simplen chemischen Grundbausteinen etwa für Waschmittel und Farben, denen Amine Fett- bzw. Wasserlöslichkeit verleihen. Und es endet bei komplexen Aminverbindungen für die Arzneimittelherstellung. Für all dies konnte eine Gruppe von Forschern um LIKAT-Direktor Mathias Beller nachweisen, dass die neue Synthese funktioniert.
In Medikamenten sorgen Aminogruppen dafür, dass der Wirkstoff an entsprechende Zellstrukturen im Organismus, an die Rezeptoren, andockt. Außerdem eignet sich der Einsatz von Aminen zur Erkundung neuer Wirkstoffe, weil schon geringe Änderungen in ihren Parametern die Wirkstoffeigenschaften beeinflussen können. So lässt sich mit Aminen im Hochdurchsatz-Screening die Wirkweise bekannter Verbindungen modifizieren und die Funktion neuer Substanzen testen.
Arbeitspferd Ruthenium
Üblicherweise brillieren Forscher in der Fachliteratur mit komplexen, hochspeziell designten Substanzen. Viele kommerzielle Ruthenium-Katalysatoren hingegen sind schlicht und stehen in unterschiedlichsten Laboren der Welt. Jacob Schneidewind, mit fast 22 Jahren der jüngste Doktorand am LIKAT und Mitautor, nennt sie „Hansdampf in allen Gassen“, stets zuverlässig und ausgeglichen.
Chemiker setzen bei neuen Experimenten zunächst oft auf dieses Arbeitspferd. Doch die Ruthenium-Spezies erbringt gewöhnlich nur ein begrenztes Spektrum an Verbindungen, weshalb Chemiker im Forschungsprozess dann auf komplexe Katalysatoren umsatteln.
Jagadeesh Rajenahally, einer der federführenden Autoren des Nature Com-Papers: „Wir waren sehr überrascht, dass ein so simpler Katalysator die Herstellung von Aminen in einem derart breiten Spektrum ermöglicht.“ Dies macht die Synthese aus dem LIKAT auch so attraktiv. Rajenahally ist sich sicher, dass die Veröffentlichung Wissenschaftler weltweit animieren wird, mehr als bisher einfache, günstige Wege in der Katalyseforschung zu beschreiten.
Kaskaden-Theorie bestätigt
Die Ergebnisse sind neben ihrer Bedeutung für Ökologie und Ökonomie aus einem weiteren Grund von Interesse für die Fachwelt. Indem das Team die Reaktion auf atomaren Ebene analysierte, fand es Antworten auf grundlegende Fragen der Katalyse. Üblicherweise läuft so eine chemische Reaktion wie in einer Blackbox ab:
Die Ausgangsstoffe, in diesem Falle ein Aldehyd oder Keton und Ammoniak, werden zusammen mit einer Vorstufe des Katalysators, in einer Lösung verrührt. Erst dort nimmt der Katalysator jene Form an, in der er aktiv werden kann, und die Stoffe reagieren miteinander. Am Ende entstehen Aminverbindungen und Wasser.
Für die Entwicklung von Synthesen mag das reichen. Grundlagenforscher aber wollen es genauer wissen: Was läuft da wie ab? Unter welchen Umständen wird der Katalysator aktiv? In welcher Phase ist er am aktivsten und was deaktiviert ihn am Ende? Dies zu erkunden half dem Forscherteam die Expertise von Jacob Schneidewind im Umgang mit Ruthenium-Katalysatoren und mit der NMR-Spektroskopie, die die elektronische Umgebung einzelner Atome und ihre Wechselwirkung untersucht. Er hat damit im Rahmen seiner Dissertation zu tun, in der es um Wasserstofftechnologien geht.
Wissen für eine nachhaltige Chemie
„Nach unserer Hypothese sollte primär Wasserstoff zur Aktivierung unseres Ruthenium-Katalysators beitragen“, sagt Jacob Schneidewind, „das hat sich bestätigt.“ Die Analysen bestätigten zudem eine Theorie, wonach diese chemische Reaktion in einer Kaskade abläuft. Der junge Chemiker wies nach, dass der Katalysator sich in seiner Struktur auf jeder Stufe ein bisschen verändert. Er konnte all diese Formen des Katalysators dokumentieren und jede einzeln auf ihre katalytische Stärke hin testen.
„Am Ende ist der Katalysator gänzlich inaktiv“, sagt Schneidewind. Er kennt inzwischen die Substanz, die da entstand, sie enthält Kohlenmonoxid, das letztlich für die Deaktivierung verantwortlich ist.
Dieses „theoretische“ Wissen können Chemiker nun in der Praxis nutzen, um einen Katalysator möglichst schnell zu aktivieren und seine Deaktivierung zu verhindern. Und auch das ist ein Weg zur Nachhaltigkeit im Umgang mit Ressourcen.
DOI: 10.1038/s41467-018-06416-6 | www.nature.com/naturecommunications
Media Contact
Weitere Informationen:
http://www.catalysis.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Natürliche Nanopartikel-Bildung bei Regenfällen im Amazonas
Niederschläge im Amazonas-Regenwald lassen massenhaft natürliche Nanopartikel entstehen, die zur Bildung von Wolken und weiteren Regenfällen führen können. Atmosphärische Aerosolpartikel sind für die Bildung von Wolken und Niederschlag essenziell und…
Forschende machen Düsentriebwerke fit für das Wasserstoffzeitalter
Flugzeuge sollen künftig mit Wasserstoff um die Welt fliegen. Ingenieure und Ingenieurinnen entwickeln dafür Düsentriebwerke. Damit diese Motoren leistungsfähig und langlebig werden, liefern Experimente von Forschenden der ETH Zürich nun…
Nanotechnologie: Flexible Biosensoren mit modularem Design
LMU-Forschende haben eine Strategie entwickelt, mit der Biosensoren einfach für vielfältige Einsatzmöglichkeiten angepasst werden können. Biosensoren spielen in der medizinischen Forschung und Diagnostik eine Schlüsselrolle. Derzeit müssen sie allerdings in…