Multifunktionales Navigationssystem für Herz-Operationen geplant: Forscher wollen kathetergestützte OPs erleichtern

Überlagerung der dreidimensionalen Anatomie (rot) der Aorta über der Röntgenfluoroskopie im Verlauf einer transkutanen Aortenklappenimplantation (TAVI) Abb.: Uniklinik Ulm

Selbst komplexe kardiologische Operationen müssen immer seltener am offenen Herzen durchgeführt werden. Mittlerweile können sogar Herzklappen kathetergestützt über eine Arterie implantiert oder etwa Rhythmusstörungen durch eine so genannte Katheter-Ablation am Herzmuskel behoben werden.

Dafür ist eine präzise Navigation nötig, die sowohl die patientenspezifische Anatomie als auch Herzschlag und Atembewegungen berücksichtigt. Im jetzt angelaufenen Projekt TRANSNAV wollen Forschende der Universität und des Universitätsklinikums Ulm mit Partnern aus der Industrie und von einem externen Forschungsinstitut ein multimodales Navigationssystem entwickeln.

Dieses System soll Operierende von der Planung über die Durchführung bis zur Dokumentation bei solchen kathetergestützten Eingriffen über Arterien („transvaskulär“) unterstützen. Bei einem Gesamtvolumen von rund drei Millionen Euro fördert das Bundesministerium für Bildung und Forschung (BMBF) das Vorhaben für zunächst drei Jahre mit über 1 850 000 Euro.

Während einige kathetergestützte Herzuntersuchungen und -operationen mittlerweile zum Standard zählen, gelten andere Interventionen als so komplex, dass sie nur von wenigen Experten durchgeführt werden.

Forschende um Professor Volker Rasche aus der Inneren Medizin II des Ulmer Universitätsklinikums und Professor Timo Ropinski vom Uni-Institut für Medieninformatik wollen diese Eingriffe dank eines neuartigen Navigationssystems einer größeren Patientenzahl zugänglich machen.

Ihr multimodales System soll erstmals alle Schritte von der Planung über die Durchführung bis zur Dokumentation umfassen und dabei die patientenspezifische Anatomie berücksichtigen.

„Der Abgleich individuell erstellter Gefäß- und Herzmodelle mit aktuellen Röntgendaten des Patienten sowie die Kompensation von Atem- und Herzbewegungen – unter anderem durch Miniatur-Ultraschallsondern sowie Deep Learning-Ansätze – machen den Eingriff hochpräzise“, erklärt Professor Rasche, Leiter der Arbeitsgruppe Experimentelle MRT.

Gegenüber derzeitigen Navigationshilfen hat das vom Physiker Volker Rasche und vom Informatiker Timo Ropinski geplante System weitere Vorteile. Bisher erfolgt die Kathetersteuerung über Röntgenfluoroskopie, woraus eine Strahlenbelastung für Patienten entsteht und ein potenziell nierenschädigendes Kontrastmittels eingesetzt werden muss.

Dabei sind solche röntgenbasierten Ansätze nicht in der Lage, die Position des Katheters räumlich darzustellen oder Organe der Patientinnen und Patienten abzubilden.

„Mit unserer Navigationshilfe kann die Strahlenbelastung und die Kontrastmittelgabe voraussichtlich deutlich reduziert werden. Durch die ständige Dokumentation der räumlichen Position der Instrumente erwarten wir zudem eine Qualitätssteigerung sowie eine kürzere Operationsdauer“, erläutert Professor Ropinski, Leiter der Forschungsgruppe „Visual Computing“.

Bereits in drei Jahren wollen die Forschenden einen Demonstrator vorweisen, der auf Katheterarbeitsplätzen aller Hersteller anwendbar sein soll – auch in den Gebieten Radiologie und etwa Neurologie.

Forschende um Professor Rasche werden vor allem ihre Expertise im Bereich Bewegungskompensation sowie dreidimensionale Herz- und Gefäßmodelle in das Vorhaben einbringen.

Der Schwerpunkt von Professor Ropinski und seiner Arbeitsgruppe liegt hingegen auf der visuellen Datenanalyse sowie auf der Planung von operativen Eingriffen und der Navigation während des Eingriffs. Dazu werden Techniken aus den Bereichen Deep Learning und 3D Visualisierung weiterentwickelt und eingesetzt.

Im Projekt TRANSNAV (3D Multimodales Navigationssystem für Transvaskuläre Interventionen) stehen den Ulmer Wissenschaftlern starke Partner zur Seite.

Die Gesamtkoordination liegt bei der mediri GmbH aus Heidelberg, einem Dienstleister im Bereich medizinischer Bildgebung, der mit spezialisierten Software-Lösungen klinische Studien unterstützt und Abläufe der Bilddaten-Prozessierung optimiert, beispielsweise durch bildbasiertes Tracking sich bewegender Organ-Strukturen in Echtzeit.

Die Forschergruppe wird durch die 1000shapes GmbH aus Berlin ergänzt, einem Spezialisten für Softwarelösungen rund um 3D-Produktdesign und bildgestützte 3D-Therapieplanung.

Das Konsortium wird durch das Fraunhofer Institut für Digitale Medizin MEVIS abgerundet. Das Institut bringt seine langjährige Expertise im Bereich klinische Entscheidungsunterstützung und bildgestützte Therapien mit der Entwicklung intelligenter Algorithmen zur 3D Modellierung von Organen, Bewegungsanalyse und Bewegungskorrektur ein.

Vollständige Bildunterschrift:

Image02: Überlagerung der dreidimensionalen Anatomie (rot) der Aorta über der Röntgenfluoroskopie im Verlauf einer transkutanen Aortenklappenimplantation (TAVI). Die Lage der Klappe vor der Implantation (Pfeil) kann anhand der Überlagerung relativ zur Anatomie – und somit sicher – überprüft werden

Prof. Dr. Volker Rasche, Klinik für Innere Medizin II: Tel.: 0731/500 45014, volker.rasche@uni-ulm.de

Prof. Dr. Timo Ropinski, Institut für Medieninformatik: Tel.:0731/50-24200, timo.ropinski@ uni-ulm.de

Media Contact

Annika Bingmann idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-ulm.de/

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Rekordeffizienz – Tandem-Solarzellen aus Perowskit und organischem Material

Den Wirkungsgrad von Solarzellen zu verbessern, um von fossilen Energiequellen unabhängig zu werden, ist ein wesentliches Ziel der Solarzellenforschung. Ein Team um den Physiker Dr. Felix Lang von der Universität…

Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert

Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die…

Wie schnell werden Kunststoffe in der Umwelt abgebaut?

Reinhart-Koselleck-Projekt der Deutschen Forschungsgemeinschaft für den Konstanzer Chemiker Stefan Mecking. Wenn Kunststoffe in die Natur gelangen, werden sie dann biologisch abgebaut? Und falls ja, wie lange dauert das? Welche Faktoren…