Marcus-Regime in organischen Bauelementen: Ladungstransfer-Mechanismus an Kontakten aufgeklärt
Ladungstransferprozesse spielen eine grundlegende Rolle bei allen elektronischen und optoelektronischen Bauelementen. Für Bauelemente basierend auf organischer Dünnfilmtechnologie sind dies u.a. die Injektion der Ladungsträger über die metallischen Kontakte und der Ladungstransport im organischen Film selbst.
Injektionsprozesse an den Kontakten sind hierbei von besonderem Interesse, da für optimale Effizienten der Bauelemente die Kontaktwiderstände an den Grenzflächen minimiert werden müssen. Allerdings sind solche internen Grenzflächen nur schwer zugänglich und daher nicht gut verstanden.
Das Team um den cfaed-Forschungsgruppenleiter Dr. Frank Ortmann (Computational Nanoelectronics Group) konnte nun gemeinsam mit Forschern aus Spanien, Belgien und Deutschland in einer Studie zeigen, dass sich der elektronische Transportmechanismus bei der Injektion in einen organischen Film durch das sogenannte Marcus-Hüpfmodell beschreiben lässt, welches aus der Physikalischen Chemie bekannt ist und auf den amerikanischen Chemiker Rudolph Arthur Marcus zurückgeht.
Durch vergleichende theoretische und experimentelle Untersuchungen konnten die in der Marcus-Theorie vorhergesagten Transportregime zweifelsfrei identifiziert werden. „Die von R.A. Marcus im Zusammenhang mit Fragestellungen der chemischen Synthese in den 50er Jahren abgeleiteten Vorhersagen, insbesondere das sogenannte ‚Invertierte Marcus-Regime‘, konnten erst viele Jahrzehnte später durch systematische Experimente zu chemischen Reaktionen bestätigt werden. Für seine wichtigen theoretischen Beiträge hat R.A. Marcus den Chemie-Nobelpreis 1992 verliehen bekommen.“, so Ortmann.
„Nun ist der Nachweis des ‚Invertierten Marcus-Regimes‘, bei dem eine höhere Spannung einen niedrigeren Strom erzeugt, erstmalig in einem organischen Transistor gelungen, bei dem die Injektions-Spannung aktiv kontrolliert werden kann“, führt Ortmann weiter fort. Dies führe zum besseren Verständnis elektronischer und optoelektronischer organischer Bauelemente allgemein.
Die Publikation wurde am 7.5.2019 in der Fachzeitschrift „Nature Communications“ veröffentlicht.
Pressebild:
HiRes-Download: https://bit.ly/2Lulciy
Schematische Darstellung des Bauelements: a – Schematischer Querschnitt des Bauelements. b – Arbeitsweise des Hot-Elektronen-Transistors. Elektronen werden durch Anlegen einer negativen Spannung zwischen Emitter und Basis in den molekularen Halbleiter injiziert und dort nachgewiesen. Diese heißen Elektronen befinden sich nicht im Gleichgewicht mit den thermischen Elektronen in der Basis, und können nicht durch eine höhere Temperatur beschrieben werden. Die Messungen können sowohl mit als auch ohne Kollektor-Basisspannung durchgeführt werden.
Über die Computational Nanoelectronics Group:
Die Forschungsgruppe am Center for Advancing Electronics Dresden (cfaed) unter Leitung von Dr. Frank Ortmann erforscht elektronische Eigenschaften und Ladungstransporteigenschaften neuartiger Halbleitermaterialien. Hierbei sind organische Halbleiter aktuell ein wichtiger Schwerpunkt der Arbeit, die durch die Deutsche Forschungsgemeinschaft im Rahmen des Emmy Noether-Programms gefördert wird. Die Gruppe ist seit 2017 am cfaed angesiedelt.
Informationen für Journalisten:
Matthias Hahndorf
Center for Advancing Electronics Dresden, TU Dresden
Öffentlichkeitsarbeit
Tel. +49 (0)351 463-42847
Email: matthias.hahndorf@tu-dresden.de
Dr. Frank Ortmann
Center for Advancing Electronics Dresden, TU Dresden
Gruppenleiter Computational Nanoelectronics Group
Tel.: +49 351 463-43260
E-Mail: frank.ortmann@tu-dresden.de
Titel der Arbeit: “Tuning the charge flow between Marcus regimes in an organic thin-film device”
Web: https://www.nature.com/articles/s41467-019-10114-2
DOI: 10.1038/s41467-019-10114-2
Autoren: A. Atxabal, T. Arnold, S. Parui, S. Hutsch, E. Zuccatti, R. Llopis, M. Cinchetti, F. Casanova, F. Ortmann, L.E. Hueso
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Spezielle Beschichtungen auf der ISS im Test
Montanuniversität Leoben bringt Innovation ins All: Ein bedeutender Schritt für die Weltraumforschung und die Montanuniversität Leoben: Nach langen Vorbereitungsarbeiten sind hochentwickelte Dünnfilmbeschichtungen aus Leoben nun auf der Internationalen Raumstation (ISS)…
Holzfeuerungen mit bis zu 80% weniger NOx-Emissionen
Fraunhofer Forscher haben gemeinsam mit dem Projektpartner Endress Holzfeuerungen eine neuartige Feuerungstechnik entwickelt, die NOx-Emissionen um bis zu 80 Prozent reduzieren kann. Damit können auch zukünftige Grenzwerte zuverlässig eingehalten werden….
Ein neues Puzzlestück für die Stringtheorie-Forschung
Wissenschaftlerin vom Exzellenzcluster Mathematik Münster beweist Vermutung aus der Physik. Dr. Ksenia Fedosova vom Exzellenzcluster Mathematik Münster hat mit einem internationalen Forschungsteam eine Vermutung aus der Stringtheorie bewiesen, die Physikerinnen…