Hochauflösender Blick in die Tiefe

Prof. Dr. Gerhard Paulus (r.) und Doktorand Silvio Fuchs von der Uni Jena wollen in ihrem Forschungsprojekt "X-CoherenT" ein hochauflösendes Röntgenmikroskop entwickeln. Foto: Jan-Peter Kasper/FSU

Ob Zellen in einem Zwiebelhäutchen, Pantoffeltierchen oder Blütenpollen – Jeder, der schon einmal selbst in ein Mikroskop geschaut hat, weiß, dass sich dreidimensionale Objekte meist nur in einer Ebene scharf stellen lassen. Sobald eine andere Schicht in den Blick genommen werden soll, heißt es, das Objekt neu zu fokussieren.

Einem Wissenschaftlerteam um Prof. Dr. Gerhard Paulus von der Friedrich-Schiller-Universität Jena ist es gelungen, ein neuartiges Mikroskopie-Verfahren zu entwickeln, mit dem sich – ganz ohne einzelne Ebenen fokussieren zu müssen – Objekte dreidimensional abbilden lassen und das in extrem hoher Auflösung. Selbst winzigste Strukturen mit einer Größe von nur wenigen Nanometern lassen sich damit sichtbar machen.

In einem neuen Forschungsprojekt wollen die Physiker dieses Verfahren nun aus der Grundlagenforschung in den Laboralltag überführen. „X-CoherenT“ heißt das Vorhaben, das vom Bundesministerium für Bildung und Forschung (BMBF) in den kommenden drei Jahren mit rund 1,3 Millionen Euro gefördert wird. „X-CoherenT“ wird im Rahmen des Programms „Validierung des Innovationspotenzials“ gefördert, das Projekte unterstützt, die aus der Grundlagenforschung entstanden sind und das Potenzial zur wirtschaftlichen Verwertung haben.

„Bei unserer Methode handelt es sich um eine Weiterentwicklung der sogenannten optischen Kohärenztomografie“, erläutert Prof. Paulus. Dieses bisher für den infraroten Spektralbereich etablierte Verfahren beruht auf der Streuung von Lichtwellen an Oberflächen oder Materialgrenzen und wird beispielsweise in der Augenmedizin zur Untersuchung der Netz- und der Hornhaut eingesetzt. „Wir haben demonstriert, dass sich dafür auch extrem kurzwelliges UV-Licht und Röntgenstrahlung eignen“, erklärt Prof. Paulus. Dank der erheblich kürzeren Wellenlänge und des breiten Spektrums der eingesetzten Strahlung erhöhe sich die Auflösung der Methode um das Tausendfache, macht der Lehrstuhlinhaber für Nichtlineare Optik deutlich.

Allerdings hat die Sache noch einen Haken: Die dafür notwendige breitbandige UV- bzw. Röntgenstrahlung lässt sich bisher nur in Großforschungsanlagen etwa dem DESY in Hamburg erzeugen und steht somit nur einem beschränkten Kreis von Wissenschaftlern zur Verfügung. Dies zu ändern ist das Ziel des Projekts „X-CoherenT“. „Wir wollen ein Röntgenmikroskop entwickeln, dass auch in ein Labor durchschnittlicher Größe passt und damit für vielfältige Anwendungen eingesetzt werden kann“, so Paulus.

In den kommenden drei Jahren wollen die Jenaer Forscher nun einen praxistauglichen Prototyp ihres Röntgenmikroskops bauen. „Dafür brauchen wir vor allem leistungsstarke Strahlungsquellen im Labormaßstab“, erläutert Silvio Fuchs. Dazu wollen die Physiker Ultrakurzpulslasersysteme nutzen, so der Doktorand aus Paulus‘ Team.

Neben der hohen Auflösung biete das Verfahren auch einen weiteren Vorteil: die Proben werden durch die Untersuchung nicht zerstört oder verändert. „In der Halbleiterindustrie ist es bisher teilweise üblich, die Proben zu zersägen, um sie in der Tiefe untersuchen zu können“, weiß Silvio Fuchs. Das wäre mit dem Jenaer Verfahren nicht mehr nötig und die Halbleiter ließen sich anschließend sogar wieder verwenden. „Auch biologische Proben könnten so auf wenige Nanometer genau untersucht werden.“

Kontakt:
Prof. Dr. Gerhard Paulus, Silvio Fuchs
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947201, 03641 / 947615
E-Mail: gerhard.paulus[at]uni-jena.de, silvio.fuchs[at]uni-jena.de

http://www.uni-jena.de

Media Contact

Dr. Ute Schönfelder idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…