Mit dem „Ring of Fire“ zum Weltmeistertitel in synthetischer Biologie

Am letzten Wochenende setzten sich die Heidelberger in Boston gegen 245 Teams aus 32 Ländern durch und verwiesen auch die Teams international renommierter Universitäten wie Harvard, Yale und Stanford auf die Plätze. Der erneute Sieg der Heidelberger zeigt, dass Deutschland in Forschung und Lehre in der synthetischen Biologie zur Weltspitze gehört.

Mit ihrem Projekt „Ring of Fire“ lösten die Heidelberger Studenten ein verbreitetes Problem bei der Nutzung biologischer Moleküle: Die Eiweißbausteine (Proteine) sind oft nur wenig stabil und können daher bei vielen Anwendungen in Forschung und Biotechnologie nicht eingesetzt werden.

Der Trick der Heidelberger Studenten: Mithilfe eines neuen Systems schlossen sie die Proteine zu einem Ring, was die Stabilität deutlich erhöhte. Der Ringschluss schützt die empfindlichen Enden der Eiweiße und macht sie damit für die Nutzung in neuen Technologien interessant. Betreut wurde das Team erneut von Prof. Roland Eils (DKFZ und Universität Heidelberg) und Dr. Barbara Di Ventura (Universität Heidelberg).

Die zwölf Heidelberger Bachelor- und Masterstudenten traten mit ihrem Projekt beim international genetically engineered machine (iGEM)-Wettbewerb in Boston an. Bei diesem Wettkampf suchen studentische Teams weltweit nach Lösungen für oft alltägliche Probleme und nutzen dafür das Potential der synthetischen Biologie. In diesem aufstrebenden Forschungsfeld werden Mikroorganismen nach ingenieurwissenschaftlichen Prinzipien mit neuen Eigenschaften ausgestattet, um in der Biomedizin, Biotechnologie oder Umweltforschung Fortschritte zu erzielen.

Bei der Endausscheidung des zehnten iGEM-Wettbewerbs 2014 setzten sich die Heidelberger in der Kategorie undergraduate gegen 245 Teams aus 32 Ländern durch und verwiesen selbst renommierte Universitäten wie Harvard, Stanford, MIT und Yale auf die Plätze. Neben dem Hauptpreis sicherten sich die Heidelberger auch mehrere Spezialpreise, etwa für den besten technologischen Fortschritt oder die beste Software, und wurden außerdem zum Publikumsfavoriten gewählt.

Nach dem großen Erfolg des Jahres 2013, in dem erstmalig ein deutsches Team den internationalen iGEM-Wettbewerb für sich entscheiden konnte, gelang es den Heidelbergern nun als erstem Team überhaupt in der iGEM-Geschichte, den Wettbewerb zweimal in Folge für sich zu entscheiden. Der zweite Preis ging an das Imperial College London (UK), der dritte Preis an die NCTU Formosa (Taiwan).

Proteine werden in vielfältigen Anwendungen in der Forschung, Medizin und Biotechnologie genutzt. Ein großer Nachteil ist allerdings, dass sie nicht besonders stabil sind. Insbesondere die Enden eines Proteins sind sehr empfindlich. Die Studenten erfanden nun eine Methode, um diese Enden zu schützen: An das wie ein verknäuelter Wollfaden vorliegende Protein koppelten sie sogenannten „Linker“, die wie ein zusätzliches Stück Faden die beiden Enden miteinander verbinden. Die ringförmigen Proteine weisen eine deutlich höhere Stabilität auf als die Proteine mit losen Enden und können so für neue Anwendungen genutzt werden.

Ein Beispiel, wie ein ringförmiges Protein zu deutlich verbesserten Forschungsergebnissen führt, hat das Heidelberger iGEM-Team bereits praktisch erprobt: In biomedizinischen Laboren wird DNA sehr häufig mit der Polymerase-Ketten-Reaktion (PCR) vervielfältigt, die bei sehr hohen Temperaturen abläuft. Beim Vervielfältigen gehen die epigenetischen Markierungen der DNA verloren, denn das Enzym Methyltransferase (DNMT1), das diese Markierungen kopiert, verträgt die Hitze nicht. Abhilfe könnte hier eine ringförmige, hitzestabile Methyltransferase schaffen: Damit ließen sich nicht nur die vier Buchstaben des genetischen Codes vervielfältigt, sondern auch epigenetische DNA-Markierungen, die für das Ablesen des Codes von großer Bedeutung sind und das An- und Abschalten von ganzen Genen steuern.

Die Studenten gehen davon aus, dass der Ringschluss therapeutische Proteine vor dem Abbau durch die Köperzellen schützen oder Enzyme, die in der Lebensmitteltechnologie verwendet werden, stabilisieren kann.

Die Heidelberger stellten der wissenschaftlichen Gemeinschaft einen universell anwendbaren standardisierten „Baukasten“ zum Ringschluss von Proteinen zur Verfügung– was dem Team neben dem Hauptpreis auch den Spezialpreis für den besten technologischen Fortschritt einbrachte.

Darüber hinaus programmierten die Studenten zwei neue Software-Anwendungen. Damit lässt sich die Länge des benötigten Linkers exakt berechnen, der benötigt wird, um die beiden Proteinenden zu verbinden, ohne die Struktur und Funktion zu stören. Da diese Anwendungen sehr rechenintensiv sind, entwickelten sie zudem die Plattform „iGEM@Home“, die die Rechenkapazität ungenutzter Computer weltweit für die Datenverarbeitung nutzen kann. Ihre Fortschritte im Bereich der Softwareentwicklung wurden mit einem weiteren Sonderpreis geehrt.

Unterstützt wurde das Heidelberger iGEM-Team unter anderem von der Klaus-Tschira-Stiftung, der Dietmar-Hopp-Stiftung, der Helmholtz-Initiative Synthetische Biologie und dem Exzellenzcluster CellNetworks der Universität Heidelberg.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Gemeinsame Pressemitteilung des Deutschen Krebsforschungszentrums und der Universität Heidelberg

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

Weitere Informationen:

http://www.dkfz.de

Media Contact

Dr. Stefanie Seltmann idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…