Druckbare Elektronik dank "anorganischer Zwerge" möglich – Nanopartikel auf dem Vormarsch

Auf der HANNOVER MESSE geht es vom 19. bis 23. April 2010 um Innovationen für die weltweite Industrie. Dass insbesondere Deutschland ein wesentlicher Innovationstreiber ist, zeigt auch der Auf­tritt des nordrhein-westfälischen Landesclusters „Nano­Mikro+Werkstoffe.NRW“. Vor allem in der Nanotechnologie hat sich das Bundesland Nordrhein-Westfalen zum Ziel gesetzt, bis 2015 Innovationsland Nummer eins in Deutschland zu werden. Chan­cen, dieses Ziel zu erreichen, ergeben sich bei der druckbaren Elektronik, denn hier geht es um anorganische Zwerge, die Nanopartikel.

Im Landescluster „NanoMikro+Werkstoffe.NRW“ ist auch das Cluster-Gründungsmitglied CeNIDE, das Center for NanoIntegration der Universi­tät Duisburg-Essen (UDE), in Halle 2, Stand C32, vertreten. Aktuell forscht CeNIDE daran, leicht verarbeitbare Polymere zu entwickeln, die eine hohe Ladungsträgerbeweglichkeit beziehungsweise Leitfähigkeit aufweisen. „Wesentliches Ziel unserer Arbeit ist die effiziente Nutzbarmachung von Forschungsergebnissen für die Industrie, vor allem an der Schnittstelle zwischen Nano- und Makrowelten“, erklärt Dr. Marion Franke, Geschäfts­führerin von CeNIDE.

Ein Beispiel dafür ist die druckbare Elektronik, die häufig syn­onym für die organische Elektronik steht. Sie umfasst Schaltungen auf Basis leitfähiger Kunststoffe oder organischer Verbindungen. Zumeist werden die Moleküle dabei in Form dünner Filme auf Folien auf­gedruckt, aufgeklebt oder anderweitig aufgebracht. Das britische Markt­forschungsunternehmen IDTechex prognostiziert, dass der weltweite Umsatz mit organischer Elektronik bis 2027 auf mehr als 300 Milliarden US-Dollar steigen wird.

Wettbewerbsvorteile mit Nanopartikeln aus dem „Zwergenreich“

Seit Beginn der 1990er Jahre wird weltweit daran geforscht, leicht verar­beitbare Polymere zu entwickeln, die eine hohe Ladungsträgerbeweg­lichkeit beziehungsweise Leitfähigkeit aufweisen. Bei allem Fortschritt auf diesem Gebiet liegen diese notwendigen Eigenschaften um mindes­tens drei Größenordnungen niedriger als bei anorganischen Kristallen. Zudem sind die organischen Materialien nicht besonders temperatursta­bil und oxidieren schnell an der Luft. Deshalb gibt es schon länger Bestrebungen, auch anorganische Materialien druckbar zu machen. Ansätze hierfür liefert die Nanotechnologie:

„Zerlegt man einen herkömmlichen Halbleiterkristall in nur wenige Nanometer kleine Partikel, so können diese in eine stabile Suspension überführt werden, die sich im Prinzip drucken lässt“, erklärt Prof. Roland Schmechel, der an der UDE die Nanostrukturtechnik leitet.

Und bei den winzigen Teilchen (nanos steht für Zwerg, ein Nanometer ist ein Milliardstel Meter) haben CeNIDE und UDE mit ihrem Partner IUTA, dem Institut für Energie- und Umwelttechnik ebenfalls in Duisburg, eine ganz besondere Quelle zur Verfügung. Im IUTA steht eine der weltweit größten Versuchsanlagen zur Herstellung von Nano­partikeln aus der Gasphase. Gleich drei Reaktoren – je ein Flammen-, Plasma- und Heißwandreaktor – produzieren die Teilchen.

„Mit dieser Kombination und der Möglichkeit, die Partikel im großen Maßstab herstellen zu können, sind wir national und international füh­rend“, betont Dr. Hartmut Wiggers, der am Institut für Verbrennung und Gasdynamik der UDE für die Synthese der Nanopartikel verantwortlich und zugleich Berater am IUTA ist.

Große Produktpalette bei Nanopartikeln

Mit ihren Produktionsanlagen können die Forscher aus Duisburg eine breite Palette an Nanopartikeln anbieten, die nicht nur für die druckbare Elektronik in Frage kommen. Silizium selbst ist nicht ideal, weil es in Nanoform an der Luft nicht stabil genug ist. Dagegen eignen sich verschiedene Oxide wie Zinkoxid, Zinnoxid oder Kupferoxid sehr gut. Die Aktivitäten am CeNIDE zielen dabei darauf ab, Funktionsschichten zu entwickeln, die unter normalen Umweltbedin­gungen einsetzbar sind. Auf Basis von Nanodispersionen sollen konkrete Bauteile wie Transistoren, Sensoren und Photovoltaikzellen entstehen.

Um die Arbeiten voranzutreiben, wurde mit der Deut­schen Forschungsgemeinschaft (DFG) ein Graduiertenkolleg mit dem Titel „Nanotronics – Photovoltaik und Optoelektronik aus Nanopartikeln“ eingerichtet. Die Aktivitäten sind fokussiert auf Nanotronics mit den Schwerpunkten „Umwandlung von elektri­scher Energie in Licht“ und „Umwandlung von Licht in elektrische Ener­gie“.

Ziel ist es, optoelektronische und photovoltaische Bauelemente nicht wie herkömmlich aus lateralen Strukturen auf Halbleitereinkristallen aufzu­bauen, sondern zu dispersen Systemen aus Nanopartikeln überzugehen. Dies eröffnet den Weg zu einer druckbaren Optoelektronik und Photovol­taik „von der Rolle“. Als optisch aktive Materialien sollen nanoskalige Par­tikel und deren Derivate entwickelt und eingesetzt werden.

Die Zusammenarbeit von Theorie, Präparation, Charakterisierung, Analyse und Bauelemententwicklung an Hochschule und in Industrie ist neu für den Transfer wissenschaftlicher Erkenntnis in neue Produkte. „Bereits auf der diesjährigen HANNOVER MESSE wollen wir in Halle 2 konkrete Demonstratoren ausstellen und gedruckte Transistoren zeigen“, verspricht Roland Schmechel.

Die Leitmesse MicroNanoTec stellt in Halle 6 die Themen rund um die Anwendungen von Nanotechnologie in den Vordergrund. Die Ergänzung dazu bieten die Forschungsthemen in der Research & Technology in der Halle 2, in deren Umfeld sich ebenfalls der Landesc­luster „NanoMikro+Werkstoffe.NRW“präsentiert. Besucher der Techno­logiemesse erhalten dabei Lösungen, die unter anderem die Energie- und Ressourceneffizienz verbessern. Das Motto der HANNOVER MESSE und somit auch der Research & Technology lautet: Effizienter – Innovativer – Nachhaltiger.

Media Contact

Silke Tatge Deutsche Messe

Weitere Informationen:

http://www.hannovermesse.de

Alle Nachrichten aus der Kategorie: HANNOVER MESSE

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…