Neuer Werkstoff zeigt wo’s weh tut – ECEMP auf der Hannover Messe 2011

Die Wissenschaftler im ECEMP-Teilprojekt SmartComp entwickeln intelligente Materialien, die Veränderungen im Werkstoff detektieren und die genaue Position der Störung anzeigen. Mit Hilfe der sogenannten Smart Composites lassen sich Unfälle vermeiden. Denn wenn Bauteile im Ermüdungsfall schon kleinste Veränderungen melden, können sie rechtzeitig ausgetauscht werden. Zudem tragen sie zu einer deutlichen Kosten- und Ressourcenersparnis bei. Unnötige Wartungen lassen sich vermeiden und der „vorsorgliche“ Austausch bestimmter Bauteile entfällt. An Hand eines Demonstrators können die Messebesucher testen, wie eine Mehrschichtverbundplatte auf aufgesetzte Gewichte reagiert und die Position der Gewichte genau erkennt.

Bauteile kann man zusammenschrauben oder löten, muss man aber nicht. Durch das sogenannte Selektive Laserschweißen stellen ECEMP-Projektpartner aus dem IFW Dresden auch komplizierte Bauteile aus einem Stück her. Dazu haben sie eine spezielle Vorrichtung, auf die sie ein Metallpulver aufbringen. Anschließend wird das Pulver mit Hilfe eines Lasers geschmolzen. Nach dem Abkühlen wird die nächste Pulverschicht aufgebracht und ebenfalls geschmolzen. Nach und nach entsteht auf diese Weise ein Bauteil, das auch komplizierte innere Strukturen und sogar Gelenke haben kann – komplett aus einem Stück gefertigt.

Im ECEMP-Teilprojekt HSMetComp nutzen Forscher den Umstand, dass eine feinere Körnung in der Regel auch eine höhere Festigkeit von Materialien zur Folge hat. Durch starkes Umformen von Titan/Niob/Aluminium-Kompositstangen stellen sie Drähte her, die bereits eine feinere Körnung haben als ihr Ausgangsgefüge. Die so entstandenen Drähte lassen sich teilen und abermals zu Stangen zusammenfügen. Formt man diese Stangen erneut um, führt das zu einem noch feineren Gefüge. Durch mehrmaliges Wiederholen des Vorgangs, entstehen Drähte mit einer spezifischen Festigkeit, die vergleichbar ist mit der von reinem Titan oder dessen Legierungen. Durch ihren sehr hohen Aluminiumanteil von fast 40 Prozent sind die Kompositdrähte aber noch einmal deutlich leichter.

Im Teilprojekt CelTexComp steht die Kombination von Metallkomponenten mit textilen nichtmetallischen und metallischen Verstärkungsstrukturen im Mittelpunkt. Dazu entwickeln die Wissenschaftler dreidimensionale gewebte Drahtstrukturen mit definierten mechanischen Eigenschaften, wie zum Beispiel definierten Steifigkeiten, Festigkeiten oder einem besonderen Energieabsorptionsvermögen. Diese Strukturen können sowohl als Sandwichkern in Crashelementen als auch als Verstärkungsstruktur in einer metallischen Matrix Verwendung finden.

ECEMP – Vom Atom zum komplexen Bauteil
Das „ECEMP – European Centre for Emerging Materials and Processes Dresden“ ist ein Sächsischer Exzellenzcluster. Die Wissenschaftler im ECEMP entwickeln Mehrkomponentenwerkstoffe mit den zugehörigen Technologien für die drei Zukunftsfelder Energietechnik, Umwelttechnik und Leichtbau. Die verwendeten Materialien gehören zu den drei Werkstoffklassen: metallisch (Stahl, Aluminium, Magnesium, Titan), nichtmetallisch-organisch (Kunststoffe, Naturstoffe) und nichtmetallisch-anorganisch (Keramik, Glas). Das ECEMP umfasst 14 Teilprojekte, an denen 37 Professuren der TU Dresden, der HTW Dresden sowie der TU Berg-akademie Freiberg beteiligt sind und nutzt wesentlich deren interdisziplinäre Verknüpfung. Das ECEMP wird finanziert aus Mitteln der Europäischen Union (EFRE) und des Freistaates Sachsen.

http://ecemp.tu-dresden.de

ECEMP-Sprecher:
Prof. Werner Hufenbach
Institut für Leichtbau und Kunststofftechnik
ilk@ilk.mw.tu-dresden.de
Tel. +49 (0)351 463-38142
Fax +49 (0)351 463-38143
ECEMP-Pressestelle:
Dr. Silke Ottow
silke.ottow@ecemp.tu-dresden.de
Tel. +49 (0)351 463-38447
Fax +49 (0)351 463-38449

Media Contact

Kim-Astrid Magister idw

Weitere Informationen:

http://ecemp.tu-dresden.de

Alle Nachrichten aus der Kategorie: HANNOVER MESSE

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Überlebenskünstler im extremen Klima der Atacama-Wüste

Welche Mikroorganismen es schaffen, in den extrem trockenen Böden der Atacama-Wüste zu überleben, und welche wichtigen Funktionen sie in diesem extremen Ökosystem übernehmen – zum Beispiel bei der Bodenbildung –,…

Hoffnung für Behandlung von Menschen mit schweren Verbrennungen

MHH-Forschende entwickeln innovatives Medikament, um die Abstoßung von Spenderhaut-Transplantaten zu verhindern. Wenn Menschen schwere Verbrennungen erleiden, besteht nicht nur die Gefahr, dass sich die Wunde infiziert. Der hohe Flüssigkeitsverlust kann…

Neue Erkenntnisse zur Blütezeit-Regulation

Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…